
mnmmmmmm*mii^~—~ mmmmmmmmmi^mmmm^*^^^ mm mmmmmi*******mm~mmmmmmm

AD-A008 153

A COMMAND LANGUAGE PROCESSOR FOR
FLEXIBLE INTERFACE DESIGN

Russell J. Abbott

University of Southern California

i

Pre pared f or :

Advanced Research Projects Agency

September 1 974

DISTRIBUTED BY:

\m
National Technical Information Servici
U. S. DEPARTMENT OF COMMERCE

■ ^.-■^-..-^...■.^^.^^■^■....■.„■.„^^.V^.^^^..,.,... ,.. ., ^.,.Jv,.^^^»^^.^^lJ^^^.a.U^»,.-^..-l-„.. , .. i.E,..Jv,i,^.^iy^. ni.-lar^^ifii

mmmmmmmmmm —" ■w pupil ^ i

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

IS l/RR-74-24
2. GOVT ACCESSION NO

4. TITLE C«nd Subi/f/^;

A COMMAND LANGUAGE PROCESSOR FOR
FLEXIBLE INTERFACE DESIGN

7. AUTHORf«;

Russell J. Abbott

9 'ifc^'Fi^f0 0RG*NIZATI9N NAME AND ADDRESS
USC/lntormation Sciences Institute
4676 Admiralty Way
Marina Del Rey, CA 90291

II. CONTROLLING OFFICE NAME AND ADDRESS

Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, Virainia 22209

14. MONITORING AGENCY NAME » ADD RESSf/f dilletent from Controlling Ollice)

16. DISTRIBUTION STATEMENT (ol this Report)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT » PERIOD COVERED

Research
6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERC».)

DAHC 15 72 C 0308

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

ARPA Order #2223/1

12. REPORT DATE

September 1974
13. NUMBER OF PAGES

i
15. SECURITY CLASS, (of tt\it report)

15«. DECLASSIFI CATION DOWNGRADING
SCH^ßUiX

This document approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (ol the mbttrecl entered In Block 20, II dIUerent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverie tide II neceeeary and Identity by block number)

Command language, command language processor, dialogue grammar, interactive
grammar, human-engineered, flexible user interface, user interface, interactive
system.

20. ABSTRACT CCon(/nue on reveree tide II neceeeary and Identity by block number)

(OVER)

Repfoducud by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dftpaf'menl of Commorco
Spfingfiold, VA. 22151 PRICES SUBJECT TO CHANGE

DD 1 JAN 73 1473 EDITION OF 1 NOV6S IS OBSOLETE
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE ('/hen Data Bntered)

.. ■ ■ -..-- ^.■■- ^- ■ -

———
■' •" ^mmmmrrmmm^ -mvm MWRJPI.HMII II

^LLUWITY CLASSIFICATION OF THIS PAGECWier Dala Enlered)

A functional specification for a computer-based, interactive Command Language
Processor (CLP) is presented. The CLP is the language processing component of a
user-oriented interface (called the Agent) to a sophisticated, text preparation
and message processing service. The CLP differs from most language processors
in that it operates with a dialogue grammar and takes the entire interaction
between user and Agent as its source parse string. The parse is ongoing and
proceeds along with the interaction. V/ithin this framework, the CLP provides:
pronominal referencing, situation dependent prompts and, on request, a
contextual review of the entire interaction.

As the user and Agent interact, the CLP develops a lexicon of the user's name
space. Using that lexicon, the CLP recognizes abbreviated and incompletely
spelled words.

A facility is provided to define macro commands presented in example form
by the user.

/ «
SECURITY CLASSIFICATION OF THIS P AGEfHTi^n D«(» Enffd)

»>Mi-iHiniii ,....J.^-.........,-.M-...^..„.,..^..>.-

m i " mm "•—"■i" .WIIM«IM«P». ** Ulli .1,11.111 WI I I ipilMHPW^P

/1RP/4 ORDER NO. 2223

ISI/RR-74-24
September 1974

^.

Russell J. Abbott

A Command Language Processor

for Flexible Interface Design

UNIVERSITY OF SOUTHERN CALIFORNh MI
INFORMATION SCIENCES INSTITUTE

4676 Admiralty Way I Marina del Rey/California 90291

(2U) 822-1511

THIS RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 0308 ARPA ORDER

NO. 2223. PROGRAM CODE NO 3D30 AND 3PI0

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOl D NOT BE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF ARFA. THE US GOVERNMENT OR ANY OTHER PERSC N OR AGENCY CONNECTED WITH THEM.

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE; DISTRIBUTION IS UNLIMITED.

.

■ —'■■'■ ■

^ mm ,.M.„>P>.V. "■•,""'IU HRimP mmmm

CONTENTS

Figures
Preface
Summary

VI

vii
ix

\

1. Introduction J
Overview of the Command Language Processor (CLP) 2

The Dialogue Grammar 2
The Session String 2
Summary 3

Service-wide Consistencies 3
The Input Interface 3
Help, Undo, Abort, and Tutor i
Context Mechanism 5
Pronouns S

Language Features 5
Multiple Language Forms 5
Macros 5
Sympathetic Parsing 5
The CLP's Service Improves with Use 6

2. The Service Components and How They Are Connected
User 7
User/Agent Interface 7

Input Interface 7
Oi^put interface or Screen Control Module (SCM) 7

Agent 7
Command Language Processor (CLP) 7
Tutor 7
User Monitor (UM) 8

Agent/Functions Interface 3
Function Definitions 8
Execution Interface 8

Functional Modules fl
User 9
User/Agent Interface 9

User/Input Interface Loop:
The Screen Control Module

Agent iO
The CLP: Entering a Command 10
The Tutor: When the User Knows He Needs Help 11

Input Correction
10

'■

MtttiMil ._^ Mi

w*~ immmmmm vmmmmmmfKim

CONTENTS

The User Monitor (UM): When the User Doesn't Know He Needs Help 12
Agent/Service Functions Interface 12

Function Definitions 12
Execution Interface 13
Functional Modules 14

Component Functional Descriptions iS
Input Interface (II) 15

Echoing 15
Editing 15
Cursor Motion Commands 16

The Screen Control Module (SCM) 17
Window Specification 18
The Text String and Use of the Pseudo-Cursor 19
Window Manipulation Facilities 19
The Pseudo-macros 20

The Command Language Processor (CLP) 20
The Dialogue Grammar 20
The Session String 21
An Example 21
CLP Activations
Contexts 23
Summary 24

23

Session Control Structures and CLP Services 25
Contexts 25

Command/Context Links 25
Context/Context Links 26

Services Provided by the CLP 26
Prompts 26
Aborts 27
Undo 27
Where-am-l and Review 28
Execution From a File 28
Identifiei- Lexicon, Abbreviations and Recognition 29
The User Training Statistics Table and Mode Value 30
Macros 31
Pronouns 32
Session-to-session Contmunity 32

Summary 33

Service Description 34
Introduction to Multiple Langauge Forms
Service Functional Module Specification

Contexts 35

34
35

v ..,„;,. ■ -..,./.^.1.-. w-;;.^..^-.:i ■,-...■ .^-^rf-l^u^^ji^^iii

mmmm w^mm^ mm—^^ I.IIHIJII..I..1JI.WIJ.IIIJ.IL., ..Mil, n «iiiiiiiiipijiij, j.miu

CONTENTS

Context Descriptors 36
Functions 37
Service Argument Data Types 38

Language Design 38
The Commands Linguistically 39
The Commands Semantically 43

Summary 44

References iS

Appendix: Data Types 46
Text Items 47
Chronological Data Types 47
Personnel Data Types 48
Special Categories 48
Quantities 48
Transmission Specification 49
Message Identifier 49

Internal Formats and Outputs 49

... ..,J^..^^.^,.^,..,..^-^. —,.^....- ^--■-■ .-.. ■^.- ...-^,^,..^ .-.~^^.^- i rdliMliiiittir

'"■" 11 n^mmmmm ji ui nimii <ii«r>«n.kL..iliui.j m*uwi9m!,vfmmm* 'mmm wMwmmmmm

FIGURES

1. The Agent Provides a Flexible Interface i

2. A Partial Parse Tree and Session String 4

3. Information Flow Paths 9

VI

 '■-— ■■ -'-"-- ■■■—Hingis,

■■■npiiiiinnwni! <' ^ vmmmmimmmmmmmm. ji.!m.nmm. i. ..,. ximmmmmimmmmmmm

PREFACE

The Information Automation project at USC/lnformation Sciences Institute is
currently developing methods to automate various information handling tasks, with
particular emphasis on message processing for military command, control, and
communications [1,2], The project, sponsored by ARPA, is an integral part f the
client's and ISI's overall program to explore the use of computer technology and
methodology in milit- y environments.

This study is one of a planned collection of reports that describes the current
status and plans of the Information Automation project. This report describes the
major interface components of the military message processing service. In
particular three modules are discussed: the Command Language Processor, the
Input Interface and the Screen Control Module.

For a brief overview, one may read the Summary alone. For a fuller picture
one should redd Pa-t h Introduction and Part 2: The Service Components and How
They Are Connected. For a good picture of the services provided by the
Command Language Processor, Part 4 is recommended. Readers interested in
more detailed functional specifications of the three subject modules are referred
to Part 3.

The Information Automation project includes an investigation into the effect of
various command languages on user populations. For that reason the military
message service is designed with a number of different command languages. Part
5 of this report describes how those command languages are specified.

Most of the work reported in this study and its accompanying documents
reflects an orientation which applies to other services besides the message
service. Part 5 of this document also discusses how an arbitrary service may be
connected to the service framework developed.

VII

■- ■ --■ ^J---- *i.i.j-.r.. -— ---■ - --- — ■^M^m„„m. i --- ■ ■ —■ ^—-..-.- lMmMmaä

«■■ — I....... Mwvwmmm^wm . mmmtmmifmm^"■'■'> "^ mm

SUMMARY

The Information Automation Project's military message processing service is a
prototype computer service. Its goal is to provide computer-naive users with
simple, direct and intelligible access to computing power. One may view an
interactive computer service as consisting of two major components; the user and
the service's Functional Modules [3], The goal of the message service is to
simplify the user's access to the Functional Modules. To achieve this goal the
service is designed with a single, two-way, special services interface which
represents the user to the Functional Modules and the Functional Modules to the
user.

The interface is called the Agent. It consists of a number of components- The
Command Language Processor (CLP), the Input Interface to the CLP, the output
interface or the Screen Control Module, the User Monitor [4] and the Tutor [5].
Each of these components contributes to making the use- and the service
Functional Modules mutually intelligible. In effect, the Agent is a soft and
forgiving buffer between the precise formality required by the Functional Modules
and the flexible imprecision needed by uncertain human users. (See figure below.)

User
Flexible protocols

Agent
Strict protocols ^

Functional
Modules

►

User-oriented format Fixed format

The Agent provides a flexible interface between the user and the
service functional modules. It interprets each to the other.

This document provides functional descriptions for the CLP, the Input Interface and
the Screen Control Module. The latter two are described briefly. The main
emphasis is on the CLP and its interfaces. Central to the translation between the
user's informality and the formal requirements of the Functional Modules, the CLP
has as its main job the development and maintenance of a formal analysis of the
user's interactions.

Preceding page blank
IX

■ ■-.■ - —>- -■

■« »■»!■■ L». ^m^^^mi > VJI •.■Lui»n«nsMK«i .1 >.i ■ ■ ^^Fw^mjm IJ»I. lu^wFv^f ^-r^w»^^w> INMHIMMHPiMnilH

SUMMARY

The following paragraphs summarize the main contents of this report.

Part I presents an overview of the techniques, services and facilities
embodied by the Agent. The basic mechanism may be summar.zed by noting that
the entire message service executes in a syntax-directed manner through a single
interpreter (the CLP). The CLP analyzes and executes a single dynamically
modified string resulting from and reflecting the dialogue between the user and
the Agent.

Part 2 provides a brief overview of the various service components and
interfaces. It take«; the reader on a guided tour of the information flow paths
through the entje service. There are three major components and two
interfaces. The components are the user, the Agent and the Functional Modules;
the interfaces are those between the user and Agent and between the Agent and
Functional Modules.

The Agent consists of the CLP, the Tutor and the User Monitor. The CLP is
the single language processor in the service. All other modules use its language
analyses. The Tutor is the central and sole source of tutorial assistance in the
service. If the user needs operational information, the Tutor supplies it. The
User Monitor supervises the user and suggests additional ways for the Tutor to be
helpful.

The Input Interface and the Screen Control Module provide, respectively, the
input and output interfaces linking the user and Agent. The Input Interface
provides a uniform and omnipresent input and editing medium for the user, while
the Screen Control Module performs a similar function for the Agent (and hence
the entire service).

This part also traces the various possible information flow paths though these
modules and indicates how each component and interface makes its contribution.

Part 3 provides more detail on the three modules which are the primary
subject of this report. The Input Interface is a simple but complete editor, it
includes commands to move the cursor, to insert, delete and replace text. Its
editing facilities are defined to be straightforward, intuitive and valuable,
especially for the small-scale editing of text.

The Screen Control Module provides facilities for service components to
communicate with the user. It permits the definition of multiple viewing windows.
Each window is described by a number of window components programmable for
the benefit of the service Functional Modules. Yet they are display-oriented and
do not require device-like coding. At this point, the specifications of the Input
Interface and the Screen Control Modules are concluded.

- - — • ■-■- -■■■"-— —- - - — ■ —^ - - - ■'---■' -- "-

PWWVBOT>i«mOTJ>ii. i. HI mmiH i i IMUI 11 WVT^PIM^V^^WI^JJI «ip.w H ■■ I.U II.P«-W»^WI«»«

SUMMARY

"v.

The CLP is a general, rule-driven interpreter. Unlike most language
processors, however, it operates on a dynamic input string and an ever-changing
parse tree rather than on a static string and fixed parse tree. The CLP operates
with a dialogue grammar which reflects the entire dialogue between the user and
Agent. The CLP is always in the state of advancing its parse of the expanding
user/Agent interaction.

Part 4 presents details of the control structures which govern a terminal
session. The rules of the dialogue grammar are divided into groups called
contexts which perform two main functions. First, they disambiguate dialogue
fragments; second, they provide a structure to the dialogue.

In this part are described the various services CLP offers the user:

0 The CLP provides situation-dependent PROMPTs when the user requests them.

0 The user may request the CLP to ABORT one or more of his activities.

o Likewise, the user may request that the CLP UNDO some action.

o If asked, the CLP will REVIEW the session with the user and respond to
WHERE-AM-I with a comforting blanket of context.

o The CLP permits EXECUTION FROM A FILE, including command programs with
paramete''s accepted from the terminal.

o The CLP maintains a LEXICON with which it provides facilities for automatic
ABBREVIATION, argument and command RECOGNITION, and display of the USER
NAME SPACE and subSPACES.

o In conjunction with the Tutor and User Monitor, the CLP distinguishes between
commands known to the ucer and other commands.

o The CLP permits the definition of MACROs. From an example of its use, the
CLP generates the intended macro. Computer-naive users should have no
trouble with this heretofor programmer-like operation.

o The U3er is permitted to make PRONOMINAL REFERENCES. The CLP finds the
antecedent.

o Facilities are provided for the user to continue work from one terminal session
to another as if there had been no interruption. Whether or not the user
takes advantage of that particular device, the more the user interacts with the
CLP, the better service he will receive.

XI

^^^^^^j-jjj^^i^^^fc^^j^ij^j^^j^

SUMMARY

Part 5 discusses two interfaces: one between the Functional Modules ^nd the
Agent; the other, the methodology for defining the command languages.

A Functional Module is defined to the CLP in terms o' functions grouped into
contexts. Each function is defined via a function descriptor. Each context has a
context descriptor.

From these function descriptors, and taking into account the particular needs
of the user audience, a language designer creates commands. A command may be
in any one of four command forms: functional positional notation, functional
keyword notation, simple English or function key form. The language designer
chooses a language form to create commands.

In the creation of commands, the language designer specifies the command
vocabulary and the argument characteristics. For each argument the designer has
a choice of various default and visibility options. Through the careful use of
these options the language designer tailors the commands tu a particular user
group.

The language designer also has the option of making the entire interaction
either CLP-driven or user-driven. If CLP-driven, the CLP prompts the user with
command frames in a fill-in-the-blanks format.

The language designer is free to map the commands and the Functional Module
functions together on a one-to-one, one-to-many or many-to-one basis.

In conclusion, the primary aim of the message service is to provide
commutation and data processing services to users who have little knowledge of

computers and data processing. This document deicribes some of the major
components of the message processing service and shows how the CLP, the Input
Interface and the Screen Control Module help achieve this important goal.

XII

'-"'-■' "■— '- .^^—.a--:.:.^»-i^^m^^.^.t«-^.;.j—JJ.;.;. ■.■■■,, ..-...-„..^.-^^ia^^^-^^'^^■^^a^»l.jj^.1i^—»-^i^.,,-^.,^..., ■ ._ , . .^...jt.^,^,^.: :^..,.^.i.Mi„.^^,■.._...,»,-.....:..,..^„.J-t,-,~^..j^L.i^J.i<aM.

1. INTRODUCTION

The Information Automation project's military message processing service is a

prototype of a class of computer services in which computer-naive users are provided

with simple, direct and intelligible access to computing power. Different services in this

class provide the user with varying sorts of computational capabilities. The military

message oervice takes message processing as its demonstration vehicle. One may view

an interactive computer service as consisting of two major components: the user and

the service's Functional Modules [3]. A goal of the military message service is to

simplify the user's access to Functional Modules. To achieve this goal the service is

designed vith a single, two-way, special services interface, which represents the user

to the Funciional Modules and the Functional Modules to the user.

The interface is called the Agent. It consists of a number of components: The

Command Language Processor (CLP), the Input interface to the CLP, the output interface

or the Screen Control Module , the User Monitor [4] and the Tutor [5]. Ecich of these

components contributes to making the user and the service Functional Modules mutually

intelligible. In effect, the Agent is a soft and forgiving buffer between the precise

formality required by the Functional Modules and the flexible imprecision needed by

uncertain human users. (See Fig. 1)

User
Flexible protocols

Agent
Strict protocols w

Functional
Modules ■^

User-oriented format Fixed format

Figure 1 . The Agent provides a flexible interface between the user and th
service functional modules. It interprets each to the other.

This document provides functional descriptions for the CLP, the Input Interface and

the Screen Control Module. The latter two are described briefly. The main emphasis is

on the CLP and its interactions with the other components of the service. Central to

the translation between the user's informality and the formal requirements of the

Functional Modules, the CLP has as its main job the development and maintenance of a

formal analysis of the user's interactions. Here we provide a brief overview of the
CLP's approach.

1

- ■ mmm

L. ■•■■-■•^-n'i|[|i[riiiii'iimiri-iiiaiiir-iiiigrirfciMri-iittfii .. ._ -^—^ ■MBaMMHWMMMatMBMttUMi - - M -- - ■■■--^^■■^«^^^»a^ak^i.-.^^^-maa

INTRODUCTION

>*.

OVERVIEW OF THE COMMAND L/1NGU/1GE PROCESSOR (CLP)

The CLP is in fact a language processor. It operates with a grammar and provides a

formal parse of the user's input characters. It differs from most computer language

processors in that the input string that it parses is not fixed. The CLP parses the

entire interaction between the user and agent as a single entity.

The Dialogue Grammar

The CLP produces its analysis through the use of a dialogue grammar. A dialogue

grammar provides a formal framework for expressing the syntactic and semantic

structure of an interactive dialogue in the same way that a standard grammar provides a

formal framework for expressing the syntactic and semantic structure of a computer

language. The CLP's dialogue grammar has as its domain an entire terminal session. (In

some cases--see Part 4, Session-to-sessiou Continuity—more than one terminal session

is included in a singls parse tree.) Thus the complete interaction between the user and

Agent is included as part of the context for each successive analysis of the user's input.

The Session String

The CLP uses the dialogue grammar to parse the user's input. However, unlike the

parse of a program by a compiler, which can complete its parse before deciding on the

well-formedness of the input, the CLP must interact with the user during the parse. As

the interaction progresses, the parse proceeds further. The user and the CLP

collaborate to build a partial parse tree of their interaction to date as analyzed by the

dialogue grammar. One path through this parse tree from left to right is called the
session string.

The session string represents the highest level of the parse so far. That is, at the

far left of the session string there is a single element representing the entire log-on

procedure. Other elements represent other completed contexts of interaction. Toward

the right-hand side of the session string, elements represent more detailed components

of the interaction. One finds individual commands which the user has given in his

current interaction context. There are subcommands shown if the user is currently

working on the subcommands of a given command. Even individual arguments appear in

the session string if the CLP and the user are currently working together on the
specification of a command.

The session string represents the CLP's record of the user's view of the session.

That is, the user is most concerned with the specific details of his current and recent

activities. He remembers, probably, only morfl generally, his activities at the start of

the session. The details of those activities are available elsewhere in the parse tree
but they are not in the session string.

L "—'•■■--"■• .^.^.^.»iil^.JJlnaa^^a^mtt^lMi^.U.1-.^.....-:-......:-...-.- .-.^^.^-M^-^I,-.^J_^-_—m^.>-»>...... J--..^„^..i.i.. m^»J,.„J ^..v.-.....«, ..-. .- ^.,,-<. ■■,....^^

r^.

INTRODUCTION

Whenever the user types new input, that input is concatenated to the session string
on the right. As the parse progresses and the input is analyzed, the session string
rises in the parse tree.

The session string often serves for the CLP as a scratch pad for interacting with the
user. The real scratch-pad-like facrlity is the terminal screen. The CLP and the user
communicate with each other through it. But the CLP uses the session string as its
record of those communications. As far as the CLP is concerned, the action really
occurs m the session string, and the terminal screen is used as a way of communicating
that action to the user. Both fie user and the CLP modify the session string. The user
adds to the session string wnenever he types additional characters. The CLP changes
the session string in two ways. First, each time a dialogue grammar rule applies
successfully, the session string changes to reflect that rule application. Second,
whenever the Agent produces an interactive response to the user, that response is
recorded by one or more elements added to the session string. Thus the session string
truly reflects the interaction between the user and the CLP (see Fig. 2).

Summary

In language processing, a parse tree represents an analysis of some language
sample. Unfortunately, that analysis is static; a language processor works on an input
string and produces (or fails to produce) a parse. Even interactive prc^ssors
eventually fail or succeed to parse the input. The dialogue grammar and session string
method approaches the problem of language analysis from a new direction. The
analysis is not only interactive but also dynamic, ongoing rather than a cingle event.
This cngoingness relieves both the user and the CLP of many burdens and
simultaneously provides many attractive advantages. Some of these are discussed
below and throughout the remainder of this report.

SERVICE-WIDE CONSISTENCIES

The Agent framework, session string and dialogue grammar permit the military
message service to provide the single, consistent, user-oriented interface which is its
goal. The entire service operates in a syntax-driven manner from the session string.
So all the Functional Modules have the same general feel to the user. This methodology
allows a number of other service-wide consistencies.

The Input Interface

At his terminal, the user always has available to him a simple, small, but complete
set of editing commands supplied by the Input interface. No matter what the user is
typing or when he is typing it, these same editing facilities are available to him.

itiüiMMkk' -- ^•;-'^",jC'''^^1-vll"-"'-i-iioii[iii,iiiiiiitfiii-iMrtiMiiniMiiifil ak—MH^aMa^u^aMUBHaMMuM, --'■"■■- ~±..~,.**.>-ä^~OJ~i***l*maMmiVMi*.

INTRODUCTION

A Anticipated syntactic units

Analyzed syntactic units

Parse tree anticipated structure

Parse tree completed structure

Session string

Figure 2. A partial parse tree and session stri ng

Help, Undo, Abort and Tutor

The message service provides a number of ways for the user to ask for assistance
or to modify his current activities. The Tutor, through the Help command, provides
assistance; and the CLP's Abort and Undo commands permit the user to modify his
current actions. These too are alway- bailable to him. Since they operate with
respect to the session string, they are provided to the user at the level of specificity
which he wants. The consistent flavor and ubiquity of these services are a comfort
especially to the naive user. '

li . . ^^^W.- ^..■. ^.S^^A^^-^.^ -. -. -^ • - - - •" r^--; . ^.. -.. ^.....:L „,...:.. .^.-^..^u^.^.^^.-.^,^.^»^. -.^...w^-^.^.^..,. ..■..■ ■-,..., ~,jijdlik

INTRODUCTION

Context Mechanism

A context mechanism unites the dialogue grammar with the structure of the

Functional Modules. !t defines a control structure for the interaction in much the same

way that sequentiality, hierarchies and subroutines do for orogramming languages.

However, the context structure is not rigid as are subroutines. The CLP is able to movn

up and down and back and forth within the user's context hierarchy as the user jumps,

with relative freedom, from context to context. This st^ucture, with freedom, is also
consistently available to the user.

Pronouns

Because the session string records commands, argument data types and contexts,

the CLP is able to find the antecedents of pronouns. The user may make pronominal
references both explicitly and by default.

LANGUAGE FEATURES

The CLP's linguistic framework is designed to provide four other important features.

Multifile Lanfrungr Forms hi Interaction

One goal of the message service is to provide language form variation to increase

user efficiency and effectiveness. The User Monitor and the Tutor are mainly

responsible for discovering needed improvements. They collaborate to suggest

language form changes to the user. The CLP's structure permits the introduction of a

number of different interaction language forms without a major reorganization.

Macros

The CLP operates in a linguistic universe in which lexical items are identified by

data type. Taking full advantage of this framework, the CLP allows the user great

freedom to refine and enlarge his own command language through the use of macros.

The user has the power to define a macro simply by giving an example of its use.

Sympathetic Parsing

The CLP is built to parse forgivingly. A pattern recognizer is built into the analysis

routines which attempts to match the user input even when it does not fit the expected

language form exactly. This can be done because the CLP knows more about ths
expected dialogue than just a parse specification.

■

-- - —^ —' i mi immMii IIBMIIW ittatmtttttu

INTRODUCTION

The CLP's Service Improves with Use

The CLP maintains a lexicon for each user. It contains the user's vocabulary
identified by data type. The CLP uses this lexicon to recognize incompletely spelled
and abbreviated words thus saving the more experienced user much typing. The
macros defined by the user are also stored. In conjunction wiih ^he User Monitor and
the Tutor, records are kept of the commands known to the tser and those with which
he has trouble. The more interaction there is between :■ user and the CLP, the more
information it has about his vocabulary and style and the better it is able to serve him.

In summary, the CLP provides a consistent, syntax-directed, u;er-oriented interface
between the user and the rest of the message service.

k.

f

 -_ -■■^■^■-'■■-:-'----- . .■■,^1-^J. , ..^ct^*.*^** m***2. .i--...^ -...,,■.■....,..■...■.,..,.,.,,,.. , .--■:.-..- .^h -i t. Jirtflfrriflj.W \, IVHII |

-

■.,....•

2. THE SERVICE COMPONENTS AND HOW THEY ARE CONNECTED

The CLP, the central exchange and data base, is a' the heart of the information flow
paths of the military message service. The message processing service consists of the
following components.

USER

The user at his termir al is, of course, the service's client.

USER/AGENT INTERFACE

Input Interface (II)

The Input Interface is the module directly responsive to the user's keystrokes. It
provides immediate feedback to the user and allows input error correction.

Output Interface or Screen Control Module (SCM)

The Screen Control Module controls the content and format of the user's terminal
screen. It provides subscreens or windows which other modules may use to present
results to the user.

AGENT

Command Language Processor (CLP)

The CLP interprets the user's requests to the rest of the service. It also provides
assistance to the user about language forms, commands available, current status and
other linguistic and structural matters.

Tutor

The Tutor inslrucis the user. It provides more detailed assistance about the
command language. It also teaches about the services provided by the Functional
Modules. It provides explanations, examples and exercises.

"'" >.. t..,.,.-^.i^-~JJ.J-^aaaiJ«^-IJJim
 -■■— ■ — *mm --■- ■

SERVICE COMPONENTS

User Monitor (UM)

The User Monitor has two tasks. First, through an analysis of the user's
preliminary profile, the User Monitor determines an initial command language form.
Then, while the user is using the service, the User Monitor analyzes the user's
performance and, through the Tutor, suggests ways for the user to refine his command
language to help. The User Monitor also records various users' degrees of success
with differing command language strategies.

AGENT/FUNCTIONS INTERFACE

Function Definitions

There is a spneific, well-defined form in which the functions are expected to
describe to the Ageni the inputs they expect and the services they perform.

Execution Interface

The CLP in conjunction with the message service Executive [6] activates Functional
Modules to perforin functions in response to user requests.

FUNCTIONAL MODULES

The Functional Modules do the message processing work of the service.

The remainde; of this section first takes a tour of the information paths through the
service. Then, each of the separate CLP modules is described in more detail. Figure 3
shows how tha modules are interconnected along an information flow grid.

The normal path of information flow for one command is:

User / II / CLP / FM / CLP / SCM / User

The user types a command; the Input Interface permits the user to edit it, then
passes it on to the CLP; the CLP interprets it for the Functional Modules; the Functional
Modules execute it and pass the results back to the CLP; the CLP records the results
and passes them on to the Screen Control Module; the S:reen Control Module shows
them to the user. Then the user types another command.

There - e a number of subcycles, detours and eddies which interpose themselves
along the tViSin flow. This section discusses the path in more detail, both the main route
and the winding subpaths.

8

 [■rin.Mi^ .~»n^»a..,wJ,..i«JA.^... -^...-.-.. ...,■,..,-...-^.-^■^.■■■■.•■- • ^^.-»^....,.-.-v..„,....,„„i.- . .,■....,: ...■-, .^, a,^.^^^..».^a-;,.^iJ;i-.^^-.-^v.^t^^t^A^~^^M-'J|^rt^||(|^|||^

SERVICE COMPONENTS

■ ^ .■..-.. . ■

User

Input

Interface

Screen

Control
Module

Funct ional

Mod ule

Func ional
Moc ule

I

Figure 3. Information flow paths

USER

The user is assumed to be seated at the terminal. Before him, the terminal screen

contains information resulting from his previous interactions. The terminal has a cursor

on the screen. The cursor is petitioned in such a way that the user sees the context in
which he is currently working.

USER/AGENT INTERFACE

There are two components to the user/Agent interface: one each for input and
output.

User/Input Imerface Loop: Input Correction

Perhaps while entering his command the user mistypes one or more characters. Or,

perhaps, he simply decides to change the commend after entering part of it. Facilities

are available to him to change his input. The Input Interface is an editor with a small,

straightforward set of editing operations. Through these, the user has the ability to

modify and edit his input. He may move the cursor around in the text, overtype

mistyped characters, delete portions which he no longer wants, or insert new text. The

commands supported by the Input Interface are a subset of those provided by the main

service editor [7]. The details of the input Interface differ from terminal to terminal.

 - - ■ '-- ■ ■ ■■■—■—■■- ■ ■ ■-■■ ■ •- - -- ■

SERVICE COMPONENTS

The Screen Control Module

The information flow path between the user and the Input Interface alluded to above
was not completely described. Omitted was any discussion of how the Input Interface
communicates with the user. In fact, a communication from the service to the user is
controlled by the Screen Control Module.

Whenever a service component wishes to send information to ' e user it does so
through, a window on the user's terminal display maintained by the Screen Control
Module. All such service components request windows from the Screen Control Module,
and the Screen Control Module is responsible for displaying the information contained in
thosa windows onto the user's screen.

The user and the Input Interface communicate through a special window ca'led the
user input window. This window is the only one into which the user types. Characters
typed by the user and correction functions performed by the Input Interface are
dismayed as corrected taxt in this user input window. Thus the user/ll cycle is in fact
a user/ll/SCM cycle.

Whenever another service component of the service wishes to communicate with the
user, it too requests a window from the Screen Control Module. Often it is important to
display a context into which the user is to enter data. The Screen Control Module
provides a mechanism to show the user as typing into a display window, still keeping
the Input Interface correctional facilities available.

AGENT

The Agent itself consists of three components: the CLP to do the linguistic work) the
Tutor to provide direct assistance to the user; and the User Monitor to evaluate the
user's performance and make suggestions on that basis.

The CLP: Entering a Command

The CLP processes the user's (Input Interface corrected) input and attempts to
recognize it as a command. The CLP works with the user, if necessary, to elicit an
executable command There are a number of services which the CLP provides to the
user toward this end. The CLP can review the terminal session to date with the user to
help him get his bearings. The review is not a recital of all commands executed, but a
statement of the interaction contexts through which the user has passed. In reviewing
the current context, the CLP provides the user with more details as to his current
status.

In addition, the CLP helps the user with particulars about the current command. If
the user is lost about what commands he may enter, the CLP can display the commands
directly available, considering his recent inputs. Or, if the user is attempting to enter a
command and is having difficulty, the CLP provides assistance.

10

L >iTllllJm-'-!---'J--"--'-- - - - -M^hM^^^^v.. ... ---*'- .-■.:.. .■--.^^.^..--.^■-^-^^-^•.■—.^■^.-■^^>-'=. ^-^.^^ .ijy^.-.. :..^ ..,...- -^.■■.>..J^..>».^w.r.1|,^,i,,|.. |^|-|--r.V.-|r|^^-...^l^^J...^. -■;;.■■ ^.^^--.■.■.■^.^x.y^; - i t j.W

SERVICE COMPONENTS

It is possible that the user typed what he intended (or through a user/ll cycle

corrected the keystroke errors he made), but that the command he typed was not

complete. F'erhaps he left out a required parameter. In this case the CLP cannot pass

the command on to the Functional Module, but must return to the user and request the

unspecified argument. The CLP has a strong facility for aiding a user to build a

command. The CLP is buiit to interact with the user in terms familiar to him. If, for

example, the user leaves out the name of the r3cipient in a command such as "Send

document ABC" (to Captain Smith), the CLP would request the user to "please enter the
recipient (a person)".

The CLP may be run in a mode in which it prompts the user for every new input.

In this mode, the user is fed a menu of possible inputs or input descriptions. Whenever

he gets stuck, the CLP prompts him again with the next set of possibilities. Even when

the user has completed a command or set of commands, the CLP keeps up with the

context in which he is working and car, prompt him on which commands are available

and which directions his session can take next.

During each of the interaction subcycles between the user and the CLP, the user

has the Input Interface correction facilities available to him. Thus the cycle is
user/ll/CLP/SCM.

Besides assisting the user when he does not know what is wanted of him, the CLP

also analyzes the user's input to see that it is in the desired form. If one of the

arguments of a command should be a date, but the user does not type a recognizable

date (or a date reference such as now, today, this morning, etc.) the CLP reminds the

user of what is needed. To say that an argument must be a certain type of entity such

as a date is to say that the argument is of a particular data type. The appendix lists

and describes the initial set of data types supported by the CLP.

The Tutor: When the User Knows He Needs Help

The powerful, sympathetic and understanding assistance available through the CLP

notwithstanding, it is still possible that the user may need more help. In that case, he

may request a tutorial session from the Tutor component.

The user has the facility to «sk für help by pressing a special key, or simply by

typing "help." When he dee', so, the Tutor surveys the user's recent transactions and

tries to provide him with more detailed assistance than was available through the CLP.

The Tutor might, for example, explain the function of a command; it might describe the

meanings of the various arguments required by the command and the effect of altering

them. The Tutor might set up an exercise for the user allowing him to experiment

safely before attempting a command on his actual data. The exercise would be

executed by the CLP and the Functional Modules in a special mode. It would operate on

real data (so that the user has a real experience) but the execution would be protected
so that the user does not do anything untoward.

11

.,-.,..,.■■ „,,..,- ,.,.. . j.iilt-aiMJllriililliiMiMigBjifltllli ■ — -■—■—"— "-*

SERVICE COMPONENTS

The user's interactions with the Tutor all pass through the Input Interface and hence
have the Input Interface correction features available. They also pass through the CLP.
The CLP parses the user's input for the Tutor. Thus all the power of the CLP language
recognizer is available to aid the user/Tutor interaction. The output, as usual, goes
from the Tutor to the user through a window supplied by the Screen Control Module.
The learning interaction , ycle, then, becomes user/ll/CLP/Tutor/SCM.

fhe User Monitor (UM): When the User Doesn't Know He Needs Help

There may be situations when it would be good for the user to have a session with
the Tutor, but when the user does not request help. Perhaps he does not know, or has
forgotten, that help is available; perhaps he is just confused or lost. Alternatively,
perhaps he is doing inefficiently a task which could be performed far more efficiently if
Only he knew how. It is the job of the User Monitor, in conjunction with the CLP, to
recognize such situations and suggest a tutorial session to the user.

There are three distinct functions performed by the User Monitor The first two
are performed off line. When the user is not in execution, the User Monitor makes a
statistical analysis of the user's dialogue looking for (a) inefficient dialogue Bnd (b)
recurrent dialogue sequences. The User Monitor selects a remedial strategy if any
instances of either are found. II requests that the Tutor propose that the user
implement that strategy the next time he logs back onto the service. The third User
Monitor service is performed on line. If the CLP has tried all its tricks with the user
and the communication is still garbled, the CLP activates the User Monitor. The User
Monitor in turn makes note of the situation and then proposes to the Tutor that it
provide help to the user. If the user accepts the Tutor's offer of help, the two then
interact in much the same way as described in the preceding section.

In this case the interaction cycle is User/ll/CLP/UM/Tutor/SCM.

AGENT/SERVICE FUNCTIONS INTERFACE

There are two levels on which the Agent and the Functional Modules interface. The
Agent must have a static, a priori definition of the functions in order to perform its
basic task of providing an interface to the functions for the user. Second, during
execution, the Agent interfaces dynamically with the Functional Modules as it directs the
execution of the user's commands.

Function Definitions

The function definitions permit the CLP to transform the user's input into executable
function calls to the services. These are discussed in more detail in Part 5.

12

■.-„■;-. ,._-^.- . ' -■ -^--^. ■^.■^.-..-.- ...,.^^.^_a^„.^J^^-^>^^^^^.^, ^„^.^ —-,.... . ..,_- -,-.w. ,..■■.. .-,..-.■..^^^ ^.^....^. ^UiM

SERVICE COMPONENTS

Execution Interface

Functional Execution. Presumably the user will tire of playing with the Input
Interface, the CLP and the Tutor and will produce an executable demand. At that time,
the CLP passes the command on to the appropriate Functional Module(s) and makes
notes to itself that a command is in execution.

The CLP is still available to the user. The user may, within the bounds of the
<;5trictions noted in the next paragraph, initiate one Functional Module after another

and the CLP keeps coming back for more. There is never any time when the CLP will
not respond to the user. Thus the service is always alive to the user and able to
interact.

There are, of course, restrictions. The Functional Modules themselves may not
permit more than one command to be executing at one time. Commands to the editor
are often strictly sequential. However, imagine the situation in which the user enters a
command to a service which takes a long time to execute. Rather than waiting for
completion, the user might wish to construct the commands to *ollow the one executing.
The CLP is available and the user may interact with the CLP just as if the executing
command had completed (as long as he doesn't need to refer to the data from the
executing command). The CLP interacts with the user to produce well formed
commands. When the Functional Module is free, the CLP feeds it the commands already
generated by the user. The user, then, is not unduly restricted by a slowly executing
command. If these follow-up commands are to new Functional Modules, then they may
execute in parallel.

Whenever a Functional Module completes its execution of a command, it returns its
results to the CLP via a window specification. If appropriate, the CLP passes that
window on to the Screen Control Module for display to the user. In some cases,
discussed next, the Functional Module response is not passed along directly to the user.

If the Functional Module is unable or unwilling to complete execution of the command
because the command was misspecified at a level invisible to the CLP, the Functional
Module would return the command to the CLP requesting clarification. Suppose, for
example, an argument was of the appropriate data type and satisfied all the semantic
tests available to the CLP, but still was not appropriate for the command. The
Func^ianal Module returns to the CLP, and the CLP notifies the User Monitor, which in
turn notifies the Tutor of the error. The Tutor explains the problem to the user who
may decide to enter a modified argument or, perhaps, to try a different command. In
this case the cycle is user/ll/CLP/FM/CLP/UM/Tutor/SCM.

If the Functional Module encounters an error condition, it informs the CLP of the
difficulty. The CLP again informs the User Monitor, which activates the Tutor for an

13

üft>-'if- l[ii^ii,i«lillv.rllM(.i^"^-M,^'-A',JJ^1^J-^M'-^Vd'Ui^--"--1^v:-- ..^.■^i-^.: -:^^.:^.X»J...16>..^^--.:^^

?iS?PPBgJUIAL-.:.:=.-4.Ji Mmj.w.u^WiU".-! -U. Jill., Jli|Ll.il.i?tIIWfIlÄ-^pw ■Ji_JJJJ^IlMl.#pL>WJ!#4tt.i,W.^^IJUi]«i^" JÄJJJiP,.««li^.«-^W iiiLpw HIIHU, %mm

SERVICE COMPONENTS

appropriate explanation of the error. The user is told of the problem and has the
option of attempting to fix it (if that is within his power) or of going on to other work.
The interaction cycle is the same as directly above.

The user will sometimes enter an executable command which the Functional Module
will complete and which results in data for the user. In that case (really, the most
common case) the cyr'e is user/ll/CLP/FM/CLP/SCM.

In some cases, the command that the user enters is, in reality, a macro command.
(The macro may te defined by the user or the service language designer or as a result
of a suggestion from the User Monitor.) Then the CLP analyzes the command and causes
the Functional Modules involved to execute the primitive subcommands which compose
the macro command. In these situations there may be numerous CLP/FM/CLP
interactions before the result is sent out to the user.

Data Bane. The CLP Keeps a data base of session-level data. In many cases, the
CLP passes that data to service Functional Modules for them to process. In some
situations, the service Functional Mrdules return data to the CLP for continued storage.
Sometimes, the service Functional Modules work on the data in the CLP's memory space.

All service Functional Modules are welcome to do likewise. A function is especially
encouraged to use the CLP's data base for storage of its own data when that
information is something about which the user may know how to ask. Thus, rather than
requiring the CLP to reactivate the service to respond to a user's question concerning
the current value of some variable, the CLP can look up the answer directly.

FUNCTIONAL MODULES

The Functional Modules do the data processing, data transmission and computational
work of the service. Each Functional Module has its own specification.

14

■■- —- —^—-*——. ^■—. inHMiilwri—iMM—iMMl— - - ^*^^*^^-,^^^*l^***^,—

.t.l| I LUUm ILJMJP wmmmrnmmtmmm mimmmmmpBir*

3. COMPONENT FUNCTIONAL DESCRIPTIONS

In the previous section we visited the various components of the service and saw
briefly what each could do. Here we provide a more detailed functional description of
three of them: The Input Interface, Screen Control Module, and CLP.

INPUT INTERFACE (ID

The Input Interface has the triple job of 1) echoing the user's keystrokes, 2) editing
his input string and 3) passing along the completed input string to the CLP.

Echoing

The Input Interface has facilities to operate in either half duplex or full duplex mode.
In half duplex mode, the Input Interface is activated only when the user types a key
which requires either a) an Input Interface editing response or b) that the Input
Interface pass the input string along to the CLP. In half duplex mode it is assumed that
the terminal displays to the user the keys which he has typed.

In full duplex mode the Input Interface echoas every character in addition to
peforming its editing and the CLP-intermediary jobs.

Editing

The Input Interface's editing commands are all activated by single keystrokes.
There are two classes of editing commands. The main class involves cursor motion and
variations on cursor motion. The second class of commands provides keystrokes to
delimit new text.

Cursor Moiion. Each time the user hits one of the cursor motion keys, the cursor
moves one unit. With the simple motion commands, the user has easy access to any
part of his input text. The actual commands are discussed below.

Text Modification. Once the user has moved the cursor to the position in the text
where he wishes to make a change, he needs facilities actually to change the text.

o Text Rep^cement
If the user types new text over old, the new text replaces the old on a
character-by-character basis. This facility is most useful for mistyped characters.
The user simply types the correct character over the wrong one. If the user
mistypes a word, he may back up to the start of the word with one cursor step.

15

UtflUlidlMBfiMHMtak.'. -

■P»P »iij-iiju-...,.. JT. J.JI. iMM iPBTM mm yimnm*1.

COMPONENT FUNCTIONAL DESCRIPTIONS

Then he may continue typing from that word as if the error never occurred.
Successive characters will eliminate the incorrect word.

For the user to eliminate an extra character typed by mistake, he need only step

the cursor over it in the erase node and the character is deleted.

o Text Insertion

Sometimes the user wishes to insert new text into already existing text. There are
two control keys which do that for him:

Begin Text Insertion

End Text Insertion

Any text typed between these two keys is inserted at the current cursor position
for insertion into a previously entered character string.

Cursor Motion Commands

There a-e control keystrokes to move the cursor either backwards or forwards in

the current input character string. It is possible to move the cursor by larger or

smaller steps. It is possible to have the cursor erase or not erase text it passes over.

In effect, there are three orthogonal modes which characterize the way the cursor
can move.

Step unit. The unit of motion may be

o a character

o a lexical unit, (i.e., up to the next punctuation

character sequence or space)

o a line.

text.
Direction of motion. The cursor might be moved backwards or forwards in the

Erase or Do not erase. The cursor passes over text. In the erase mode, that text

is erased; out of the erase mode, it is kept. The erase mode is fleeting. It is

maintained for only one cursor movement. The user is protected from accidentally
erasing correct text after entering the erase mode to erase an error.

The actual Keys assigned to specific functions are determined by the physical

terminal used. Thus the function keys are named but not assigned specific character
codes in the table below.

16

 - - «...,^-u-*— - -..^^.^

■W^^UIHJ.KWP" UJ i -am»! [l^mBWP^Pi^W™iW"WJll^lFliB LiflWlI*J^J"i ki-Ujii. ,iji.j,.MJ-i.u^JÄUiPB"w,*j

COMPONENT FUNCTIONAL DESCRIPTIONS

KEY FUNCTION

erase

reverse

forward

Enter the erase mode. (Enter non-erase mode after the next action.)

Enter backward mode. This is the base mode. The Input Interface is
in backward mode at the start of each new input.

Enter forward mode.

move Step the cursor in the mode direction by one character (and erase

that character if in erase mode).

move word Step the cursor by one word, i.e., to the next punctuation character

sequence in the mode direction (and erase all characte s passed
over if in erase mode).

move line Step the cursor to the end of the current line in the mode direction
(and erase all characters passed over if in erase mode). If the

cursor is at the end of the current line, step, in the mode direction,
to the end of the next line.

. The Input Interface editing functions are a subset of those provided by the main

message processing service editor. The editor and all other text manipulation services

are upward-compatible from the Input Interface. This service-wide consistency

provides uniformity and ease of use throughout.

THE SCREEN CONTROL MODULE (SCM)

The Screen Control Module provides no services directly to the user. It is invisible

to the user, but it provides essential services to other components of the service. As

the Input Interface helps the user put his communication together to send to the CLP,

the Screen Control Modi le provides facilities for service components to put their

communication together tr send to the user.

The Screen Control Module has sole and complete responsibility for everything

displayed by the service on the user's terminal screen. When a service component

wishes to display something to the user it requests a subscreen, or window, from the

Screen Control Module. The service component writes into that window through text

manipulation faciliiies provided by the Screen Control Module. The Screen Control

Module displays the window to the user Even the Input Interface communicates with

the user through a Screen Control Module window.

17

 ■
'■""■: '■-^'^■■' jmmstm ■ _.■,--..•.:. --■-....:..-,.»-^..»-.J-.^--...-->

fWHiPSiiipwiiSiiipflPippBBpiap^ U,.«iJiÄ!iilll.iW!i_™

COMPONENT FUNCTIONAL DESCRIPTIONS

Window Specification

A window as defined by the Screen Control Module has the following elements:

Heading

A text string always displayed at the top of the window. The heading may be
null.

Footing

A text string always displayed at the bottom of the window. The footing may
be null.

Window Type

There are two window types: fixed-sized and scrolling. A fixed-size window
displays a fixed number of text lines. A scrolling window displays as many text
lines as space permits, and allow user-controlled scrolling of additional text.

Window Size

The number of text lines to be displayed (the minimum number if the window Is
scrolling).

Priority

The priority of this window with respect to other windows. If there is not
enough room on the screen to display all windows simultaneously, those with
the highest priority are displayed.

Window-ID

An identification for reference to the window.

18

Text

A string of character codes and special function codes. The character codes
include formatting characters; the function codes indicate pseudo-cursor
positions and pseudo-macro calls.

Text Pointer
A pointer into the text.

Brightness

The level of brightness at which the window Is displayed.

Blinking

On/Off. If on, the window is made to blink.

Current Pseudo-Cursor

A pointer into a text string indicating which is the current pseudo-cursor
position.

 ■-'—-^-^-

 .1 J •■^^■^^^ww«»^^ n^^vmvummmw^m v^pammMMAm I I. II. Hü W^W*MaJ--JA.ii.4Ml^W"WW^Mi^"WB'tV*

COMPONENT FUNCTIONAL DESCRIPTIONS

Overlay
A window ID. The named window, if any,
pseudo-cursor position.

is overlaid at the current

The Text Strir,^ and Use of the Pseudo-Cursor

The text string element of a window has special functional qualities of its own. It
may include special characters to mark pseudo-cursor positions. These are used to aid
interactions between the module defining the window and the user. ',t ir> possible for a
module to request that a certain window be displayed over its own window at indicated
pseudo-cursor positions. When the overlaid window is the user input window, the user
is given the impression that he is typing directly into the window of the underlying
module.

Imagine a service with a form for the user to fill out. The service displays the form
on the screen through a window, instructs the user to enter the first element, and
through the pseudo-cursor mechanism, asks the Screen Control Module to display the
user's Input at the appropriate plact in the form. The user will see the real cursor
blinking at the spot indicated by the pseudo-cursor.

The user types the form element. He has full use of the Input Interface correctional
features. When he completes his entry, the service inspects it. If valid, the service
writes it into the same position on the fo, m where the user typed it. The service then
'equests that the user input window be displayed at the next form entry point.

Window Manipulation Facilities

The preceding alluded to the Screen Control Module commands to manipulate
windows. These commands are used by other components of the service in
manipulating windows. They a-e not used by the user. All commands return a value
and/or a success/failure indicator.

The Set commands

For each element of the window, there is a command to define or redefine it.

Create window

This command creates a window and returns its ID.

Delete window
This command deletes a window

Advance pseudo-cursor

Change the pseudo-cursor indicator to point to the next pseudo-cursor position
in the text.

19

, inrtfif inVrf mi -il^hrt-iifririMMiwiiifrii'T .

uwi Mü. ■.. j i.ii4Mwnit^q<inianP"VHin«aajBPMIOTVm«mM^mna«aiiu!iw iui ■■■i.iuii n i n I.III .■ i i n^* if ■« i .•>

COMPONENT FUNCTIONAL DESCRIPTIONS

Text editing commands

All the Input Interface editing commands are available. They operate on the
text pointer as cursor.

Other text editing commands
Other text editing commands are available as needed.

Overlay window

This command causes the indicated window to be overlaid at the current
pseudo-cursor position in the base window, and hence displayed there to the
user.

The Pseudo-Macros

One other very important feature provided by the Screen Control Module permits
the other modules to communicate with the user in the user's own terns.

The Screen Control Module provides a limited text pseudo-macro expansion facility
.vhich it applies to text in windows. That facility permits other modules to specify data
in a canonical form; the Screen Control Module will expand that canonical form to fit the
input/output language form in use at the time by the user. See Part 5 for more
discussion of language forms.

COMMAND L/INCUACE PROCESSOR (CLP)

The CLP transforms the ussr's input into executable commands. Thus its basic job
is that of a language processor.

The CLP is able to recognize a number of different language forms. It transforms
those language forms into canonical function calls. Part 5 discusses these forms more
fully.

The CLP is also ab e to deal with a number of predefined data types. The appendix
lists these data types.

The CLP provides a number of special services to the user. Part 4 discusses these
services in more detail.

It is the goal of this subsection to provide a functional .overview of the CLP's
operations.

The Dialogue Grammar

The CLP interacts with the user by parsing his input with respect to a dialogue
grammar. Imagine a grammar with a start symbol, or distinguished symbol (i.e., data

20

L

wiv miwm*w*m i WMBt'WiJiiPlUJ ^JilU I JL|,^^,J,MISJ11|1^!P!.W#U" I,I:(U.IJUIJU.II ■J^^P.ffW.Jl LJ LWIAWJ^^MJ

-

COMPONENT FUNCTIONAL DESCRIPTIONS

type) of <termmal sesGion> and witn d production rule:

<termina! session> ::- <log-on><interactions><log-off>

Each of these is further broken down until an entire dialogue is specifiable. Such a
grammar, if used to generate a dialogue, would produce the contributions of both
members of the dialogue--not just those of one speaker. The grammar includes the
CLP's interactions as well as the user's. The CLP operates by analyzing the user's
input with respect to such a grammar. Some of ihe rules of the grammar have semantic
components. Of these, some have effects internal to the CLP. Some of them activate
Functional Modules. Some provide direct aid to the user and some activate the Tutor
for more detailed help. In effect, the entire service is syntax-driven from the CLP.

The Session String

The CLP keeps track of the current state of the parse in a syntax graph. The path
through the syntax graph from the starting point to the current input which is at the
highest level in the parse structure is called the session string. The session string is
the CLP's record of the user's sequence of actions. There is no complete parse of the
input string until the user logs out. Yet, even though there is no complete parst, there
are actions. Some of the rules which apply have semantic components which execute
when they apply. These rules, of course, are relatively high-level rules and apply only
when the input has been sufficiently clear. This execution mechanism is a valuable
generalization of that of looking only at small segments of the input—i.e., "the
commands"—and executing them when analyzable.

Not all the rules in the CLP's dialogue grammar are context-free. The session string
therefore changes from time to time. As in a general production system, some rules
use the session string as a scratch pad. This scratch pad feature is particularly useful
to closely interactive subservices such as the Tutor and the CLP's command completion
aids.

The session string is not composed of impenetrable, atomic symbols (such as the
symbols used in formal production systems). Instead, the elements of the session string
are blocks called syntactic units. They are identified by data type to the session string.
They have general attribute/value storage mechanisms. Thus, as a command is
analyzed, the block representing the command contains pointers to lower-level blocks,
representing arguments to the command.

/in Example

Here is an example of how the CLP uses the session string to aid the user. The
example arbitrarily uses a particular language form, i.e., positional functional notation.
In general, comments from the CLP and the Tutor are in the same language form as that
in use at the moment by the user. When a section of the session string is shown
(indicated with an * at the far left), each symbol represents one syntactic unit in all

21

m^utmammmimmm - HMHHMHM '-— -•- - ■^—-^—^

="^PWP■^PlP■w^w,' pi!ig<*iTmB9«>RIPIi^|p>ipi9WM^^

COMPONENT FUNCTIONAL DESCRIPTIONS

cases but one. The "menu" syntactic unit cons'sts of everything delimited by the
angles. The data type of that syntactic unit is menu; the other information in that
syntactic unit is stc red as attribute value pairs.

Suppose the user types

* f(a,?

The CLP interprets that input (the question mark, in particular) as asking for a list
(menu) of possible second arguments.

There is a menu rule which is activated by the ? symbol. That rule looks back in
the string to determine what the user is currently doing. Then it:

o deletes the ? from the string;

o makes note (for the User Monitor) that the
user requested a menu at this point;

o presents a menu to the user;

t inserts the menu into the string.

Assume that the possible second arguments are XXX, YYY and 111. After
application of the menu rule, the session string would appear

* f(a, <menu, 1 XXX, 2 YYY, 3 ZZZ>

At the same time, the semantic component of the rule sends a message to the user.
It reflects the new state of the session string, but is put in terms the user understands.
On the screen the message displays the menu and instructs the user to make a
selection. To the user the message appears

MENU
1. XXX
2. YYY
3. ZZZ

Pleare type 1, 2, or 3 to make your selection.

Perhaps the user types a 2. Then the string becomes

* f(a, <menu, 1 XXX, 2 YYY, 3 ZZZ> 2

22

^^^i^aji^v. ...■, ■■-■'M».fti(;f|ii>;ir,.liWi in ■ ,^...-1:,..;»..:.-.. .■■...........-.^..-.——-.^. -^ .i-v w,!-W.-.-IW- ^ -^ ^.,...~_-...—

«BIWpi!W!fWWflPW?WV^5"!^^

COMPONENT FUNCTIONAL DESCRIPTIONS

The next rule to apply is the menu selection rule. It is activated by the menu

element and it picks the second choice on the menu as the user has asked. The rule

then deletes the menu from the string, which now appears

* f(a, YYY,

The user may continue.

CLP Activations

The CLP is event-driven. Whenever the user completes an input, the Input

Interface passes it on to the CLP. That action causes the CLP to resume execution.

The CLP appends that new input to the session string. It then continues its parsing

algorithm on the newly expanded session string.

Whenever an act.ve Functional Module completes its current task, the CLP is also

notified. It resumes execution, and in this case modifies the session string according to

the results produced by the Functional Module.

The CLP i-outes the results of Functional Module activations to differing destinations.

In the standard case, the CLP passes the results on to the user. If, on the other hand,

the Functional Module signals an abnormal result, the CLP notifies the User Monitor

which, in turn, activates the Tutor to explain the abnormality to the user.

If the Functional Module execution had been performed as an exercise propocod by

the Tutor, the CLP passes the results back to the Tutor for display to the user and

whatever further explanation the Tutor determines is appropriate.

Context«

Having examined Ihe possible information flows for a single command, it is

worthwhile to consider briefly how the CLP deals with interactions on a longer time

scale.

The CLP supports a context mechanism which organizes commands into related

groups. The context notions are explained in more detail in Section 4.

o Through the use of contexts the user may communicate with the Agent in an

abbreviated manner. It is not always necessary to express a command in complete

deiail; the context makßs meaningful what might otherwise be a meaningless partial

command.

o Contexts are structured both horizontally and vertically. The user is free to

move in any direction. He may move from one context to an adjacent context. He may

23

 -—^ -.>^....^.-*:..^-~-.-.^ .-—....,- ■: — ■■- ■■ - , „___ lute r -r i 'ii ■■•»■üMB^

. ,u.. I_II iJ|[|ILJ.pj.|tWJLBWgg^BMP?BmpgqW^ |IMJ.^,ML3Wi™?m

COMPONENT FUNCTIONAL DESCRIPTIONS

also skip over contexts. The user switches contexts by entering a command which is
not in his current context. The CLP searches out the closest context which does
contain that command. When the user does jump a number of contexts, the CLP in
effect inserts dummy commands which take the flow of the interaction through those
contexts. Thus the user has all the advantages of structured interaction without the
disadvantages of excessive detail.

o Contexts permits the CLP to provide a pronominal reference service. Pronouns
do not refer back into contexts which have been completed [8]. Thus contexts which
the user has left are not examined during the search for pronoun antecedents.

o Contexts permit the CLP to prompt the user intelligently about his open options.
They also allow the CLP to review the user's status with him. The Tutor uses the
contexts for similar purposes.

Summory

The CLP is an event-driven language processor which interacts with the user in
accordance with a dialogue grammar. The grammar includes the notion of interaction
contexts which permit more natural and free-flowing activities by the user.

24

 •■■—- - —-■*n ■■mrf'- -■ -•-■—■-.— ■.- -■— -■- - ^-■ ---^ - -■■-•'—'—— ~^~—^*- uMadigi|b*Mfe|u^|ycaMMMtMMa|H>a, ..r.,-..^--^.-:.«^

mammmmmmmm*—mr^*mm*^mmmmmm9mm^mmmrmmammmwm**m*^^mm'*'<m I.OT^OTUM» wfmmaemm>iJ>*-!. J-i-.M-iutmmnmi

...

4. SESSION CONTROL STRUCTURES AND CLP SERVICES

The CLP provides a number of aids to the user. Before describing the specific user

assistance features, further discussion of the CLP context mechanism is presented.

CONTEXTS

During a terminal session, the user is always operating in some interaction context.

As he performs various operations, he moves from context to context. The context

feature permits the command language to be much simpler than it might otherwise be if

each command had to be completely self-contained. On the other hand, th, ontexts do

not compartmentalize the various subcomponents of the service as is the case with most

vertically structured services.

A context is simply a collection of commands. A context has a name and some

descriptive material attached to it. The main function of a context is to group

commands together and show how they relate to other commands.

Each context is made of of a) pointers to the commands it contains and b) pointers

to other contexts. Besides contexts having links from one to another, commands too

may have links from themselves to contexts. Commands are linked to contexts in two

ways and contexts are linked to each other in three ways. Here we mention the types

of links available between contexts considered as collections of commands. These links

grow out of the links between groups of Functional Module functions discussed in

Part 5.

Command/Context Links

Command link type I. Each command is linked to the context in which it is found.

That is, a context points to all the commands which it contains, and

Command link type 2. Some commands create subcontexts.

creates a subcontext has a pointer to that context.

Each command which

For example, some Tutor commands create contexts in which the user is expected to

respond. Each such command points to the context which has the rules to deal with

that expected response.

25

^^-.- —-^l-Hirtiiilii>iliM[vja^'"^frirti^t**:"i*Ma^-.'-' '■ — . .,._-.J—^^■_..
^--■- ■

. --■--'■■■ ywifaiia'rn'liil^'ntffl
 ■■-- -- • .-.-.-.

I "" "1 III" J1'" I —»»-n «w«p«wrw^^™nppw!«iwniippp™

SESSION CONTROL STRUCTURES AND CLP SERVICES

Context/Context Links

Context link type 1. Each context which is a subcontext in the sense of command

link 2 is linked to the context containing the command which activates it as a subcontext.
That is, each context links to its supercontext.

Context links types 2 and 3. In some cases, interaction with the user moves step

by step from context to context in some well-defined, finite state manner. Contexts

may have forward and backward links which point from themselves as a current context

to a next context 3nd from the current context back to a previous context. The log-on

commands are a context which refer to the general Agent commands as a forward

context. The general Agent commands refer to the log-off rules as a forward context.

■^,

The CLP uses the context mechanism to recognize user commands. The user is

always in some current context. From that starting point, the CLP cycles through

related contexts searching for command formats which match the user input. When a

command is found which matches, the search is terminated. If no command is found, the
CLP fails in its search and takes appropriate action.

This context mechanism provides a formal structure to interactions without trapping

the user in stacks and pushdown stores. The pushdown mechanism is available if the

user chooses to make use of it. But if he wishes to switch context, he is completely

free to do so, just as long as the vehicle he uses is not meaningful in a context closer to

his current one than he had intended. The mechanism also allows different contexts to

use the same commands to mean different things. Since the CLP stops at the first

successful match, the problem of ambiguity does not arise. The only constraint imposed
is that each context must be internally free from ambiguity.

SERVICES PROVIDED BY THE CLP

The CLP provides a number of services to the user.

Prompt.«

When the prompt mode is enabled, the CLP will respond to the user's request for a

prompt by indicating what possibilities are available next. Again, the form of the CLP's

response is dependent upon the particular language form currently in use. Depending

upon the immediately preceding input, there are a number of different types of next
inputs.

o if the user is in the middle of entering a command, the CLP prompts the user with

the name and description of the next command component expected. If the

argument has associated with it a short list of possible values, the CLP displays that
list.

26

■ •— • - • ■•-—;'-- uum ■MiUMHMitilaUMIMMMMUailHHMiMi i

""»■■ LII , •W»B^W^^PH!«W^"^t^»» ■ i BUI i i.>i»^|iwiv> IV n IUII1IUI "llHUJIBJiUIU.»

i
SESSION CONTROL STRUCTURES AND CLP SERVICES

o If the user has just completed a command and is in a specific interaction context, the

CLP prompts the user with the names and descriptions of other commands available

in that context.

o If the user is in a position to switch from one interaction context to another, the CLP

prompts the user with the names and descriptions of other interaction contexts.

The CLP also lists the main commands in each of the contexts mentioned.

o If the user is in need of more help, the CLP shows the user how he can ask for more

detailed aid either from the CLP or from the Tutor.

Often, the CLP responds to a prompt request with information from more than one

of these categories.

Aborts

The user may request that the current line of pursuit be abandoned. As in the

situation with prompts, the CLP's response depends on the user's current needs.

The user has the option of fpecifying the scope of the abort. Some such are:

current command, previous command, current context. If he does provide the explicit

specification, the CLP aborts as requested and resumes interaction in the previous

context. If the user does not specify the abort argument, the CLP makes a guess and

then requests a confirmation from the user.

The CLP's guess is also context-dependent. If the user had just completed a

command before entering the abort request, the CLP guesses that the abort applies to

that command. If the user is in the midst of entering a command when he requests an

abort, the CLP guesses that the abort applies to the currently incomplete command.

Whenever the user requests an abort of one of his commands which has begun but

not finished execution, the CLP passes that request along to the executing Functional

Module. It is the job of the Functional Module to accept abort requests and to abort

cleanly.

Undo

The user may request that a previous operation on his part be undone. Undo may

apply to a command or it may apply to his entry of a command argument during an

interaction with the CLP.

If the user requests that a command argument specification be undone, the CLP

simply deletes that specification from the command under construction.

27

JBtilillU'aito

>*.

SESSION CONTROL STRUCTURES AND CLP SERVICES

The Functional Modules in the military message service a'a corstructed in such a

way that they can undo commands to the greatest extent possible. When the user

requests that a command be undone, the CLP passes that request along to the

Functional Module which executed the command. It is up to the Functional Module

actually to perform the undo. The CLP passes the Functional Modules' response back to

the user after translating it into terms familiar to the user.

Part of the description defining Functional Module functions to the CLP is the Undo

flag (see Part 5). It indicates whether or not the Functional Module is capable of

undoing the function. When the user requests a function which the Functional Module

cannot undo, the CLP may warn the user and request a special confirmation from the
user before executing the 'unction.

Where-flm-I and Review

At any point, the user may request a summary of his current command and

interaction context. When the user asks the CLP "Where Am I?" the CLP reviews with

the user his current hierarchy of open contexts. In addition, if the user is entering a

command, the CLP also displays that command, to the extent to which it is defined.

The user may also request that the CLP review with him the work that he has done.

For a general review, the CLP reports to the user all commands executed in the highest,

i.e., the general Agent, context plus other commands in currently open contexts. If any

of those commands initiated some interaction in a closed, lower-level context, the CLP

reports the fact of that lower-level interaction, but does not automatically review it. In

effect, the CLP translates and displays the session string to the user.

The user may, however, request a review of his activities in any of the lower-level

contexts mentioned above. In that case, the CLP reviews his actions there and reports,

but again does not give details, of any still lower-level contexts entered. Through this

mechanism, the user has the means to see any of the work he has done. At the same
time, he is not overwhelmed with unwanted detail.

Execution from a File

The CLP has facilities to accept input from a file. When operating in th s mode, the

CLP assumes that there is a user at the terminal. If there are any problems

encountered in the file material, the CLP requests clarification from the user at the
terminal.

Thus the CLP accepts input from the file, but interacts with the user at the terminal.

It is possible, then, to write a program (i.e., sequence of commands), store it on a file,

then execute it while accepting input from the terminal. The CLP has defined a special

data type <terminal-input> which can be used in file programs whenever it is desired to
accept a parameter from the terminal.

28

——— -'-■-- ' ■,..w^,.^..^.„.^^....i...-..,.„,_.:...„.^...,....,.. - - - : .■...■.--.- ^ ■ ' .■-.-...,...MW„„...1...^

SESSION CONTROL STRUCTURES AND CLP SERVICES

F

^.

The terminal user is never locked out. The CLP is always open to accepting input

from the termina;. Anything the user types at the terminal takes precedence over

commands from the file. It is possible, of course, for the terminal user to request that

execution from the file terminate. Normally, the CLP displays the file to the user. He

can watch the program as it executes and stop it whenever he chooses.

The editor acts as intermediary when the CLP is executing from a file. When the

user gives a command to execute from a file, he specifies where in the file execution

should begin. The CLP passes on that specification to the editor, which in turn feeds

the CLP text from the file. The user may be editing the file at the time. In that case a

command such as execute from here (the current pointer position into the file) mj,,,.£-'-.

sense to the editor. In any event, whatever the specification, it is a text specification.

The user already knows how to express these to the editor. The editor need not

perform any operations on the file as it is passed to the CLP. Any corrector functions

entered by the user will already have been performed before the text was stored in
the file.

Identifier Lexicon, Abbreviations, and Recognition

The Lexicon. For each user, the CLP mantains an individual lexicon of identifiers.

Whenever the user issues a command, the parameters used in that command are stored
in that user's identifier lexicon.

The lexicon records how and when each identifier was used. Each time an identifier

is used, the data type of the parameter for which it was used is stored along with the

date of that use. A count is kept of the number of times an identifier is used as a

particular data type. The most recent date of use is the one date maintained for each
data type usage.

The CLP uses this lexicon to aid its command recognition algorithm. When the user

first enters the service, his personal name space is unfamiliar to the CLP. As he uses

the service, however, the CLP gathers a collection of the names which he uses and the

ways in which he uses them. These lexicon entries do not restrict the user from using

a name in new or in multiple ways; the CLP does not reqi.ire that the user conform to

his previous usage. Rather, the CLP uses the lexicon to heip produce an initial analysis

of the user's input command and so to respond faster to the user.

Abbreviations. The CLP permits the user to abbreviate identifiers. The user may

terminate a word-sized unit by a special abbreviation character. The CLP then

attempts to find an identifier from the identifier lexicon which abbreviates to those

characters. Using the simplest abbreviation algorithm, the CLP looks for identifiers

which begin with the characters typed. More complex pattern matching abbreviation
algorithms may be available if appropriate.

29

.....-..^.,^.».' J.-^.L......,J:.1.,. -., J. 'J^;'-"-A-' ^^ .,„...■..-.a.^-w ■' —-' -""-■--itiniiiiTfriiirimiiMtiiiMiBMiiMilll „,____

SESSION CONTROL STRUCTURES AND CLP SERVICES

from thp ^ ab'reV,a;i0n eXpan5IOn seems ^ect, the CLP requests a confirmation
rom the user. If confirmed, the abbreviation is entered into the lexicon with a link to

Ixicon^Faciliti. ^ ^ •!'! abbreViati0n ,S ^ ^ CLP finds '» direc^ '" ** lexicon Faclities are also ava.lable to permit the user to define abbreviations explicitly
—as well as implicitly by use. "punuy

Rccogmtion and Prompting. The CLP provides a special type of abbreviation
service called recognition. When the user hits a special, designated recognitio ey

loo8 rrl ^^ the CLP IS ^^^ The CLP anal^es ^ ^ Prided nd
n foMhe It6^ l0nS '" ^ '"**■ Th- ^ CLP substitutes the complete .exica'

th CLP etu sr a: ;dds a prompt for the next e><pected ^«^ ■"- the CLP returns the expanded input string to the Input Interface for further characters

The user may perform any corrector actions he desires on the expanded string just as

if ha had typed it himself. When the user finishes the command' the Input fnterface
returns the string to the CLP for final processing.

Recognition differs from abbreviation expansion in that it is performed immeoiately.

Abbreviahons are expanded after the user has completed the ent.re command and

imm^dit , H . CLP '" eXeCUti0n- ReC08niti0n iS Perf0rmed '- e-h lexical unit immediately when it is requested.

Jlraurnent PossiMUi«* List. The CLP also makes use of the lexicon to give the

user a l.st of the possible arguments to a command. Normally, when the user requests

arZen V """T ar8Ument, ^ ClP ^^ * descriP^" * the expected

P "ed to beM"' ' ^ CLP may inf0rm the "" that the ™* -Sument is
IP rom the CLP o'T^ T*' ^^ " ^ ^ ch00ses' he "** -quest more

CLP h , r> \ . PS fhe USer f0rg0t the name 0f the dotument he wanted. The

?his oart a" dCCüment nameS in the USer,S le><ic0n and t0 ^V them.
nelded h^ r "^ ? ^ ^ ^ ^ "**' ,S "^ l0St 0r COnfused «"out what is needed, but has simply forgotten the specific name he wants to use.

The User Training Statistics Table and Mode Value

The User Monitor and the Tutor maintain a table which shows which of the service

unctions the user has been taught. The CLP uses this table to determine which input
commands the user is likely to give.

and !IT r 'T "0deS " "'^ the CLP USeS thiS trainine Satisfies table: permissive
and restrictive. In the restrictive mode, the CLP does not execute any functions for the

user which the table shows him not to know. In the permissive mode, the CLP executes

functions about which the user has not been tutored. In doing so, though, the CLP

requests special confirmation from the user. It also reports these executions to the

30

_ , - ■-■■•■-* i r aifrfff illilnilirtliitliMill ilirrtlifaürifci»jMI^ti-i --■■.—"-'—^■^'■^-.'--■'^ ■ ~ UHUiattiiMi ..■»^■■■..„-„..--aaM

SESSION CONTROL STRUCTURES AND CLP SERVICES

Macros

The CLP supports a facility for the creation of macro-commands. The macro
definition feature may be used either by users or by language designers (see Part 5
below). A user might define a macro command when, for example, he finds himself
executing some particular sequence of commands repeatedly. He would define a macro
command to perform the entire sequence of commands at once. Sometimes the User
Monitor, via the Tutor, suggests such possible macros to the user.

A language designer might define a macro command to create a more user-oriented
service interface. That is, a service may be initially defined with a large number of
service-dependent mini-functions. While appropriate for the structure of the service,
these individual mini-functions may be of little use to a user. The language designer
for the service would use the macro feature to define commands more in line with the
user's interests. (See Part 5 for more details on language design.)

■ * Defining a Macro. The macro creation facility defines a macro from an example of
its use. A macro definition consists of three components.

o the macro call form;

o the word "means" (or some other indicator that a macro is being defined);

o the macro definition;

To define a macro, one enters:

text-string-1 means text-string-2

where text-string-1 is an example of the macro call form and text-string-2 is the
intended meaning.

For example, assume that a document must be "Released" before it can be "Sent." A
user might define a new "Mail" command which performs both operations.

The user enters:

Mail XYZ to Captain Smith means
Release XYZ
Send Captain Smith XYZ.

Once defined, the user may use that command for any combination of documents and
people—not just XYZ and Captain Smith. The effect will always be 1) to Release the
document and 2) to Send the document to the named person.

31

— i-rriimti-iiinriiitiiiiii ^'•*"-—-^ ■ i ■-■'^^■"" _ _

SESSION CONTROL STRUCTURES AND CLP SERVICES

Notice that the user defined the macro by giving an example of its use. He did not

have to write a program using symbolic variables or special macro parameters and
formats.

The CLP', Response to a Macro Definition. When the u-.er enters a macro

definition, the CLP analyzes it and then returns for confirmation to the user with its

analysis of the definition. The CLP's analysis is couched in a fill-in-the-blanks format.

In the previous example, the CLP would respond:

You are defining a macro-command.
Mail to

document person
means

Release

document

Send to .

document person

If the user confirms this interpretation, the macro is stored as part of the user's
personal data.

Macro Documentation. The CLP permits (in fact encourages) users to supply

documentation with their macros. After a macro is defined, the CLP returns to the user

and requests a brief English description of the macro's function. That documentation is

stored along with the macro. It is of use to the user if he forgets his intention or to

others who may use his macro. It is also used by the Tutor in explaining the macro.

Pronouns

The CLP permits the user to enter pronouns as command arguments. When the CLP

encounters a pronoun, it searches back into the session for the most recent argument of

the same data type which occurred in a command whose context is accessible from the

current user context. It is that value which the CLP takes as the intended antecedent

Before executing the command with the implied argument, the CLP normally displays the
completed command to the user for confirmation.

Session-to-Session Continuity

As indicated above, the CLP develops more and more information about the user. A

lexicon is built; user-defined macros are stored; abbreviations used by the user are

kept; records are maintained of the commands known to the user and those with which

he has trouble. So, the more the user interacts with the CLP, the better it knows him
and the better it can serve him.

32

.. ,,.:..,..■ ...^ .,-.—^...■-J..J,.,I-^ J^a^^-i B-mffiWUmTllMr i —■ ■ ■■■ ■■ -- ■ ■-■■ '- >■" »--.E..-^.^-^...— ■■■■.....■^Mi

SESSION CONTROL STRUCTURES AND CLP SERVICES

The CLP relies on services from the Executive module to provide a second form of

session-to-session continuity. When the user ends a session by logging off, a

check-point snapshot is taken of all session level parameters. The next time the user

logs back on to the message service, the CLP offers him the option of resuming his work

exactly where he was when he exited previously. The user may choose to do so, in

which case interactions proceed as if there had been no interruption. Or the user may

choose to begin a fresh terminal session and disregard the checkpointed information.

SUMMARY

The context mechanism and the special services offered by the CLP are all aimed at

providing a service environment as friendly and comfortable as possible for the service

user. He is the client, the customer, and it is his convenience which the CLP and the
Agent intend to serve.

L
33

""'"-"—-'- -v. -:....-,-,:^..-J,-.^..—..i....^...^.-..-,:.^^.

5. SERVICE DESCRIPTION

The previous sections discussed how the user and Agent interact. It described how

the user could move around from one context to another; how, within any context, he

executes commands; and what services the CLP provides to assist him in entering those
commands. This section describac how those commands are defined.

INTRODUCTION TO MULTIPLE LANGUAGE FORMS

Most services would not have a section on this level since the commands would be

designed along with the service. The message service is not built in that way. There

are three reasons the commands are not built into the service beforehand.

1. The military message processing service is a model for a class of services any one

of which may be attached as Functional Modules to the front-end Agent. These

other services are as yet undefined. Their commands also are necessarily unknown.

2. One of the goals o* the Information Automation project is an analysis of various

command language variants for their impact on the ultimate user. For this reason,

the project has not picked just a single language form, but has permitted the

implementation of a number of command languages for the same service functions.

It is expected that different language forms will be variously suited to differing user
populations.

3. If the experimentation of (2) yields the hypothesized results, then from the user

organization's point of view too it is important not to predefine the ultimate

language. Different user organizations will want differing language forms. For

their individual purposes they will need to tailor the commands to their own needs
so that the emphases are different.

Information Sources for Commands. A command embodies information from two

different sources. F.i 't, a command must relate to the underlying service functions

which its execution invokes. Second, a command reflects the linguistic and other local

choices which determine its form and default structure. To describe how a command is

defined we first review the functional specifications expected from the Functional

Module authors. Then we discuss the range of choices available to the language
designer for constructing commands which activate those functions.

Thus two different groups of people are involved in the definition of a command
language.

34

'--^— , ^^ ^-i.....,..^.,..—,...,, -.,-,......-.^ ^w,...,-.^--~-^.^...,.—-... ■
■"-■■■ - - —

SERVICE DESCRIPTION

1. The Functional Module authors who build the services and provide functional
descriptions for them; and

2. The language designers who take these functional descriptions and design commands
to meet the needs of their particular audience.

Once the commands are designed, they are connected to the Agent. The CLP uses
them as a table-driven interface between user and Functional Module.

SERVICE FUNCTIONAL MODULE SPECIFICATION

The author of a service Functional Module is expected to provide a functional
specification of his Functional Module. A functional specification consists of sets of
service functions called contexts. Each context contains a number of functions. First
we discuss the context specification requirements and then describe how a service
module author specifies the individual functions.

Contexts

The context mechanism is a way of organizing service functions. The Functional
Module writer may organize his functions into related groups. He may require that
these groups be executed in some sequence. He may also list some groups as
subordinate to specific functions.

That is, a service may require that the user pass through a sequence of states:
stats 1, state 2,..., state n. In each state the user has the option of performing some
particular set of service functions. The Functional Module author groups his functions
into contexts which represent these states. When the user is in context 1, he is
expected to be performing one of the service functions in state 1.

Recall that the user is not restricted to performing only those service functions in
his current context. He may slide from context to context and the CLP keeps up with
him. The context mechanism is not a way of constraining the user. In fact, it permits
the command language to be much simpler than it might otherwise be if each command
had to be completely self-contained. The contexts do not rigidly compartmentalize the
various sub-components of the service as is the case with most vertically structured
services. For our purposes in this section, though, the contexts provide the Functional
Module author a way to organize and build structure into the collection of functions he
offers.

Once the Functional Module author has his functions grouped into contexts, he may
indicate how these groups are linked together. Two contexts are considered linked
together if the user may move from performing functions from the first to performing
functions from the second.

35

L ------ - .- . . - — ■ ■-....- ~.. ... _ ,..,_■ .. — ..^Me^a—^Afc.,.-^. .-

SERVICE DESCRIPTION

Context Links: Hierarchical and Sequential. There are two basic ways contexts

may be linked: hierarchically and sequentially. Two contexts are linked hierarchically if

the user is expected to return to the first context after completing his work in the

second. A command in one context with its subcommands comprising another context is
an example of two contexts linked hierarchically.

Two contexts are linked sequentially if there is no requirement that the user will
necessarily return from the second to the first.

Passageway Functions. These two ways of linking contexts may be further

qualified. In some cases a user may pass from one context to another only by

executing a specific function. In other cases, no such function passageway is required.

Thus a context consisting of subcommands is entered only by executing the particular

command which leads to the subcommands. Alternatively, a context consisting of the

major commands of a service may be entered from the Agent context simply (in most

cases) by executing one of that service's commands. In general, it is not necessary to

invoke the service with an additional explicit command. Both of these examples are
cases of contexts linked hierarchically.

There are also examples of sequentially linked contexts with and without function

entries. Consider an editor with two function contexts: one to edit a specific document

and the other to perform file manipulation operations. Each may be linked to the other

sequentially (forming a cycle). To move from the file manipulation context to the

document edit context, the user must somehow mention the document to be edited. He

must use a function which refers to a document. So only through the use of certain

functions may one enter the edit context. However, to move from the edit context to

the file manipulation context requires no such mention of a particular document. The

user may execute a function in the second (file manipulation) context directly without an
intermediate step of entering that context.

CONTEXT DESCRIPTORS

A context as specified by a Functional Module author is specified with four
components. A context descriptor might appear as follows.

Context-Name:

Sequentially-Linked-Contexts Lists,

Hierarchicaily-Linked-Contexts Lists,
Functions List

where

Context-Name is a unique, arbitrary, symbolic identifier.

36

■^^ —-*■— ■"—,....■,..,......,^ J.,.».—.■■a.»-..,. *l ^-IIMMai I ■ - -■■-..-■ ■ ^~-—--

SERVICE DESCRIPTION

Sequentially-Linked-Conicxti List is a list of context names. Each context name
may be qualified by the name of an entrance function.

Uicrarchically-Linkcd-Contexts Litt is identical in form to the Sequentially-
Linked-Contexts List.

Functions List is a list of function names. These are the names of those

functions considered grouped together to make up this context. The function

names used in qualifying the context names for lists (2) and (3) must also be in
this list.

This completes the brief discussion of contexts. Next, we discuss the specifications
of functions.

Functions

As far as the CLP is concerned, a Functional Module consists of functiono (which may

be organized into some structure through the context mechanism). The Functional

Module author must describe these functions to the CLP through function descriptors.

The descriptor for a function has three parts. A function description might appear
as follows:

function-name (argument-list) undo-flag

Function Name. The function name is a unique, arbitrary, symbolic identifier.

Argument List. Each function which may take arguments has an argument list.

The arguments are defined to the CLP positionally. For each argument, the function

descriptor provides a data type and a flag signaling whether or not the argument is
required for the function to execute.

Each argument is specified by an argument descriptor:

<data-type, requirement flag>

Data Types

The specific data types supported are discussed immediately below. An

argument's data type specifies the form of data expected by the function for
that argument.

The Requirement Flag

It is possible for a function to provide an argument position and yet not require

that the argument oe supplied. (Note: To say that an argument is not required

is not to say that a default value is assumed. Default values are defined below
in the language design section.)

37

 - ■' '■ ■—■"-

 ^- - - , . - - - .. _ ■ ...-—..-^■^^^-^^.^^^ ^^^. - - -

SERVICE DESCRIPTION

Thus the argument list is a (possibly null) sequence of ordered pairs, one for each

argument. The first element of the pair is a data type name; the second element is the
required/not-required signal.

Undo Flag. The undo flag is set on a function which the Functional Module is able

to undo. The CLP uses the absence of this flag to warn users when they are entering
commands which might result in unalterable changes.

Service /irgumem Data Types

The data type field in an argument descriptor specifies which data type the

argument must be. This field also provides context to allow the CLP to differentiate

among commands during command analysis. There are several classes of data types
which are supported by the CLP. They are:

Number Item Types

Chronological Types

Personnel Types

Priority

Security Handling

Message Type

Signoff

Reviewer

Address

Recipient

Date-Time Span

Message Identifier

These data types are discussed in detail in Basic Functional Capabilities f,
Military Message Processing Service [3] and in the appendix.

or a

To summarize, Functional Module authors specify their services to the CLP by

providing (1) function descriptors for all the functions which they perform and (2)
context groupings and structure for those functions.

LANGU/1GE DESIGN

It is the task of the language designer to provide a set of commands for the

execution of Functional Module functions. The language designer has available to him

(1) the service module function descriptors and context information and (2) tools
provided by the CLP for designing a command language.

A command language consists of a collection of commands. The domain of the

command language designer includes only the design of individual commands. The

language designer has no power to specify explicitly any intercommand structure.

38

■ :i - •■■■■- "- *
..„..».„.i-, !.„.„, --,- I. L^^ ;....,.. imiaMlnmHiiiiaiiii"^-'—^.i—■-■■-- -..-;-. ■.■-i..,...-■■........^.- ..■J,.,.... .,,. .. .- ^.... ^^w^,-»mm-^i.-^.^-iv^^j

SERVICE DESCRIPTION

There is, in fact, an intercommand structure, but that structure grows out of the context
specification provided by the Functional Module author. While the language designer is
then limited in the structuring power available to him, he is not restricted solely to
creating commands which map one-to-one onto the service functions. A command may
cause the execution of more than one service function and hence may effectively move
the user from context to context. Or, the language designer may require a number of
commands from the user to execute a single service function. And, of course, the
language designer may map some rommands one-to-one directly onto service functions.

The Commands Linguistically

To specify the commands linguistically, the language designer defines six elements:
1. The Command Language Form
2. The Vocabulary
3. The Argument Default Values
4. The Argument Visibility Values

•.._ 5. Warning and Confirmation Indicators
6. The User-Driven or CLP-Driven Indicator

Each of these is discussed individually.

a. The Command Form. There are a number of command language forms
supported by the CLP. For each command, the language designer selects one of these
forms.

o Functional Positional Notation
The language designer may specify commands as using functional positional notation.
In this form the name of the command is followed by an optionally parenthesized list
of arguments. The arguments are assigned positionally. The arguments may be
separated by commas. An argument may be an expression. Arguments omitted are
indicated by successive commas.

o Functional Keyword Format
The functional keyword form is similar to the functional positional notation. Here
too the command name leads to be followed by an optionally parenthesized list of
arguments. Only in this case the arguments are given by argument name rather
than by position.

For example, assume that the names of the arguments of the command which sends
a document are: Sender, Recipient and Document. Perhaps the command name is
Send. Using the functional keyword command form, the user would enter

Send (Document - SSD2, RECIPIENT - ARPA)

The arguments might be given in any order. Note that the Sender argument is

39

■k^ ■•—'• -^-——'"-'—""'-"-^-^imiHiMln. -n - r Ml bnil i,,,,,,,--^^-—.■'■-"--"■---■'■- ..^.,.—~.l^^-i..^J.- ■.,■

SERVICE DESCRIPTION

•■,

omitted. The CLP supplies the default value specified by the language designer,

which in this case might be the user himself. Section c. below provides a
discussion of defa lit values.

0 Simple English

The CLP supports a simple English type of input language. If the user is operating

m this mode, he will type mosl of his commands as short command-like sentences.

In general, in this form the command name serves as the main verb of the sentence.

The other arguments complete the required case elements of the sentence. These
will vary depending upon the specific function involved.

o Function Keys and Names

With this language form, the user indicates a command through the use of a single
Key rather than the command name.

When operating in this .anguage form, the CLP always has cisplayed on the terminal

screen a list of the currently available functions in the current context and a list of

the available new contexts to which the user may wish to move. Preceding each

function name is an indication of a keyboard key. These will in most cases be the
letter beginning the name.

e The user specifies which function he wishes to execute (or which new context h-

wishes to enter) by hitting the single key indicated. When the user hits a function

key, the CLP immediately emphasizes the display of the specific function name and

adds an additional display to the terminal screen, the list of input argument names.

The CLP provides an emphasis to the argument currently expected. For each

argument, the CLP includes still another display. The individual argument display

shows either of two possibilities. In one case, the CLP displays the argument data

type {e.g., for the argument "recipient", the data type is person). If the argument

may be picked up from a predefined set of possibilities known to the CLP (the other

case), then the CLP displays these specific possibilities along with the function keys
used to select them.

Besides the function keys used to specify arguments, the CLP has available function

keys to ^uvate its regular services. There are function keys for Abort, Help,

Where-Am-I, etc. There is no special prompt key, since in this mode the CLP is'
prompting all the time.

b. The Vocabulary. For each of the language forms indicated above, the

language designer must provide the vocabulary. The vocabulary elements (some of
which were alluded to already) are:

0 Command Name

Each command has a command name.

40

L ■■■■' - ^-.„..^ -:■-.>. - ..,^...^. ■ .., ,. _^,..,.,.....^ .-......■..,.,.....■.,.,..,.. ^^.,.,.....-

SERVICE DESCRIPTION

K.

0 Argument Names

Each command argument has Its own name.

0 Simple English

For the simple English language form the designer must supply a lexically defined

sample English sentence for each command. (The CLP analyzes that sample

sentence with its simple English grammar. The result of that analysis provides the

Simple Enghsn command form expected from the user.) Thus the designer must

provide both the sample sentence and the vocabulary data required to parse it.

c. The Argument Default Values. For each command argument, the language

designer must determine whether or not default values can be supplied. If default

values are permitted, the CLP provides tools for the language designer to specify what
the default values should be.

Default values fall into four classes.

1. Constants

The simplest class of default values are the constants. The language designer may

declare that a defaulted orgrment take a specific constant as value.

2. Global Service Values

For some arguments, a constant default value is not sufficient. The CLP provides

functions which supply information such as time of day, d.''e, orgariijation name and
location, etc.

3. User Specific Vp1

Some default v .ould be user-specfic. Thus the CLP permits the language

designer to specify such values as user name, user title, user location, user security
level, etc.

4. Pronominal References

The CLP supports a limited pronominal reference facility. Sometimes, it is

convenient to default references whicli have just been made. Thus after creating a

document, the user may Send it without repeating its name by defaulting the

Document Name argument in the Send command. If the language designer specifies

pronominal reference as the default value of some argument, the CLP will take as

the value the most recent argument of the same data type in a context which is still
open.

d. The Argument Visibility Valuer The CLP provides the language designer

with the ability to make an argument more or less visible to the user. There are three
levels of visibility:

41

^.^-„.^ ^.^^^.^^^.-^,-^.^. ... ■ ^.~—^^,... :, .^.^ <—- ■■^a»6Jl^fcjL.;^-A^^.^„-J.J--- ^ . -. ^. !-.. i ■ .t..+ ..'. ..n.'.-^ .■.■■ ■ ^. ^ . ■ ■ ■ 1

SERVICE DESCRIPTION

1. Active

If a command argument is declared actively visible, the CLP takes every opportunity

to inform the user that the argument exists and may be given a value by him. If,

for example, the user defaults an actively visible argument, the CLP will inform the

user that the argument has been defaulted and will display its default value. The

language designe, should declare an argument actively visible when he believes it is

important for the user to know that there is such an argument.

2. Passive

An argument declared passively visible is not pushed on the user. Typically,

beginning users are not taught about passively visible arguments initially.

A user need not know about passively visible argume its to use the service.

However, experienced users who have learned about them may manipulate these

arguments to their benefit. The CLP does not prompt a user for a passively visible

argument. The CLP does respond to inquiries from users about their options by
displaying passively visible arguments.

If an argument is declared passively visible, and if that command argument supplies

a service function argument which the service module author has declared required,

then the language designer must supply a default specification.

3. Invisible

The language designer may declare some arguments invisible. A service fi iction

may have left open an argument option which the language designer may wish to
close.

For example, the rank and title of the user may be an argument to a service

function. Yet the language designer may want to prevent the user from specifying

his own rank. He may declare thai argument invisible. Invisible arguments must be

provided with default specifications if they are used as required arguments for
Functional Module functions.

e. Warning and Confirmation Indicators. Recall that the service Functional

Modules are not able to provide UNDO facilities for all functions. The language designer

may wish to warn the user about commands which activate such functions. The

language designer may attach a warning flag to any command. The CLP will warn the

user that the command cannot be completely UNDOne before executing it.

In these cases, it is important to ri quire a confirmation signal from the user.

Sometimes in other situations too the language designer may wish to force the user to

confirm commands before execution. Commands marked v/ith a confirmation flag are not

executed by the CLP until the CLP has issued a confirmation request to the user and the

user has confirmed the command. All commands with warning flags from the Functional

Modules are automatically marked with confirm flags.

42

i iii»iin—mimiiiiiiiiMlin ._____». MMUMMIftMIIMlMHalHnMtfl

■

SERVICE DESCRIPTION

There are cases in which it is not the entire command which should be confirmed

but just an individual argument. The language designer may attach confirmation flags to

arguments as well as to commands.

j. User-Driven or CLP-Drivcn. The language designer may indicate whether the

primary mover in entering commands is the user or the CLP. If the command language

is user-driven, then the CLP waits for the user to enter commands and interacts only as

an assistant. If the command language is CLP-driven, then the CLP takes the initiative in

prompting the user to enter commands. The CLP prompts the user by executing in a

mode called Fill-in-the-Blanks.

The Fill-in-the-Blanks input mode works in conjunction with any of the other forms.

The CLP provides the user with as much prompting as possible, which comus in the form

of a set of blank spaces presented in context with descriptions beneah each blank
space.

Let's consider the functional notation language form used in Fill-in-the-Blanks mode.

If the user has not indicated a particular command to execute, the CLP prompts

command
(

arguments

Once the user has specified the function, the CLP reprompts the argument blanks to

match the specific function. Thus if the user types "Send", the CLP responds:

Send (

command document recipient sender priority
-)

The user may then fill in or default the other arguments.

When Fill-in-the Blanks is used with Simple English, the CLP displays the service-

supplied English command sentences with blanks (described underneath) for the

arguments.

The Commands Semantically

To complete the specification of the commands, the language desipner must indicate

how the commands he defined correspond to the service functions defined by the

service author.

To indicate which commands correspond to which functions, the language designer

constructs a command macro. A command macro is a special kind of macro in which the

call string consists of commands. (See Part 4, "Macros" for more details about how a

43

 , -^fj'-f-^Ak^;..
■ ■-^^„k^ .^.^^^^-^^..■,.,...,^.^.,.J;,^.^,^^:^W^^Aj.^^J.^.)-..lt;t^Lfc.1^^„,..:,w ^..■J.1Jv..r„_Jj;. "-^•^-^■•-iriiiüiiifc HI i ■-■"—-^

SERVICE DESCRIPTION

macro is built.) For the language designer, the macros which he creates consist of two

major components: the commands string and the service function string. The macro, in

effect, equates the two and defines how the arguments from the commands are used to
supply arguments to the functions.

Consider an example in which the commands have been defined using functional

notation. Let cl, c2,...,ck be some commands and let fl, f2,...,fj be some service
functions. Then the language designer might declare

cl (al, a2) c2 {a3)...ck (an) means

fl (a3, an) f2 (al, a3)...fj (al, a2, a3, am)

The CLP takes That declaration and builds internal rules which reflect the indicated

relationships. Thus if the user ever enters the command sequence cl, c2,...,ck then the

CLP will execute the service functions fl, f2,...,fj with the appropriate arguments. Note

that this mechanism permits the language designer to include as many or as few

commands and as many or as few service functions as he wishes in any such
declaration.

SUMMARY

This completes the description of how the Functional Modules and the command

languages are specified. A service designed along these lines will have clean internal

interfaces. At the same time it will be user-oriented and pleasurable to use.

The primary aim of the message service is to provide computation and data

processing services to users who have little knowledge of computers and data

processing. This document has desc::jed some of the major components of the

message processing service and has shown how the CLP, the Input Interface and the
Screen Control fvlodule help achieve this important goal.

44

 - ■-■ — -'— —— ■^j—'""^-^-- —

REFERENCES

1 U.S. Air Force, ESD Study on Imra-liase Communications, 1973.

2 Ellis, T. 0., L G. Gallenson, J. F. Heafner, and J. T. Melvin, /I Plan for
Consolidation and Automation of Mi.itary Telecommunications on
Oahu, May 1973, USC/lnformation Sciences Institute, ISI/RR-73-12.

3 Tugender, R., D. R. Oestreicher, Basic Functional Capabilities for a
Military Message Processing Service, ISI/RR-74-23 (in preparation).

4 Heafner, J. F., A Methodology for Selecting and Refining
Man-Computer Languages to Improve Users' Performance, September
1974, USC/lnformation Sciences Institute, ISI/RR-74-21.

5 Rothenberg, J. G., An Intelligent Tutor: On-line Documentation and
Help for a Military Message Service, ISI/RR-74-26 (in preparation).

6 Mandell, R. L, An Executive Design to Support Military Message
Processing Under TENEX, ISI/RR-74-25 (in preparation).

7 Rothenberg, J. G., An Editor to Support Military Message Processing
Personnel, ISI/RR-74-27 (in preparation).

8 Deutsch, B. G., The Structure of Task Oriented Dialogues, Stanford
Research Institute Technical Note 9, SRI Project 1526, Menlo Park, California,
1974.

45

— — ~--^-'^-~—■■'■-— —■—■—1-_^.^.^-—_^—^^ Ma^MMMUNilMMMMM

APPENDIX: DATA TYPES

The data types are one place within the Agent where semantic knowledge of the

service is known. The knowledge of data types allows the Agent to respond
intelligently to end-user inputs.

Associated with each data type is the recognized input forms, the internal format

which is used by both the Agent and the functional modules, and the output forms. The
data types fall into seven classes:

1. Text Items.

A text item is a string of uninterpreted characters. The Agent is not concerned
with the information contained in these items.

2. Chronological Items

These items describe both points in time and periods of time.

3. Personnel Items

Personnel items refer to individuals and groups of end-users. The Agent can check
these items for validity.

4. Special Categories

The special categories are small specialized vocabularies for special situations. The
Agent can also check these for validity.

5. Quantities

Quantities included cardinals, ordinals, and money amounts. Reasonableness ranges
can be supplied for first-order checks by the Agent.

6. Transmission Specifications

These are often-used compound items which specify where a message is to be
delivered, along with certain delivery parameters.

7. Message Identifier

This is a service message identifier. It refers to an actual message and can be
checked by the Agent.

Each class is discussed in general below with primary emphasis on the input forms

recognized for the specific items in that class. At the end of this section is an

alphabetical listing of all data types and their associated internal formats and output

forms. For each type there are associated long and short output formats. 0

46

»t^r-iL...:..^.-^^.^--- ■■■■■■■—a.-jinum i.iiii.i.rn^rti,»^»-^^-^.!.., Mut.MM^tßiiiamiiläiiiiim .■^-^■.....J^.....,^......-n ta^ . ■■^.ii^ .rWim iTilr'Mrtn'iiMriiffi'ii 11 ^ m i ■—

--

APPENDIX

Text Items

Character/Word/Line/Text
A text item is simply a string of uninterpreted characters.

The start of a text item must be indicated by an unambiguous text item in the
argument list. While the user is entering text there are two keys which cannot be
entered into the text item: the escape key and the text item termination key. The
escape key will enable user activation of macros (discussed in Part 4 above) within
text items. The termination key ends the text item.

if'V.

There are actually four text item data types: character, word, line, and text.
Character is a single character. Word is terminated by a space, tab, or punctuation
mark. Line is terminated by a carriage return or other end-of-line key. A text is
terminated by a terminate key. This latter key, as with the escape key, is
determined by the physical terminal design.

Chronological Data Types

Date/Time/Date-Time/Date-Time Range
The chronological data types represent dates and times and are recognized by the
CLP.

Dates

The input format for dates is normally month-day-year, though day-month-year
will be allowed where recognizable. The separators are either -, /, space, or
comma. Missing years will be defaulted to this year, and missing month to this
month. If a day is not specified, then an entire month or year will be the input.
This is one example of a Date-Time Range.

Month may be spelled out completely, trivially misspelled, abbreviated, or
numbered. Days are numbered. Years are either four digits or two digits with
1900 assumed.

Last Tuesday and next Thursday are legal dates, as are today, tomorrow, and
yesterday.

Times

The input format for times are hour:minute:second. This is normally expected to
be 24-hour local time. Suffixes are recognized for other time zones, and AM &
PM. Midnight and noon are also recognized. If the seconds or seconds and
minutes are not specified, the time is a range covering the hour or minute
specified.

47

^^. MMMMNkBMHI MM

APPENDIX

Date-Time

A Date-Time is usually just a Date followed by a Timej however, now, 2 hours
from now and A hours ago are legitimate Date-Times.

Date-Time Range

A Date-Time Range is most generally specified by a Date-Time followed by a

later Date-Time. Several other range specifications have been given above.

Additionally, tomorrow afternoon, next weekend, yesterday morning and this
evening are also recognized.

K

Porsonncl Data Types

Rank/Name/Title/Organi2ation/User-ID/Address

The personnel data types refer to users of the services. The users fall into th
classes: individuals, positions, and organizations.

ree

Special Categories

Message Type/Pnonty/Secunty Classification/Signoff

Special Handling

The definition of a special category data type is just a list of words and small

integers associated with those words. If a particular argument to a function is

listed as being a special category type, this means that the only legal inputs are

words from a very restricted vocabulary, or an associated abbreviation. When

the CLP recognizes the special category entry, the associated integer is passed
to the Functional Module.

This is one data type class which the language designer can add to when he

specifies the target environment. New special category data types, along with

the Functional Module descriptions and user lexicon aliow the laguage designer

to mold the basic military message processing service to fit the needs of
particular user groups.

Quantities

Cardinal/Dollar/Ordinal

The quantities are just numbers with specialized input and/or output formats. More

data types will be added to this class as needed. As opposed to the special

categories discussed above, these data types must be adden by a CLP programmer.

Some expected additions include telephone and Social Security numbers.

48

I ■111.11 III«-' - -■•-" .-....-.— ~ ...- -■:.. ., ^

^^^^^^^^—^^^^^^^^—

APPENDIX

Transmission Specification

Recipient/Receiver

The reviewer data type is only an output type. The inf. rmation contained with a

reviewer is a recipient (provided by author), signoff (provided by reviewer), and

some text (provided by either). The input form for a recipient is different for a

local or a remote addressee. For a local addressee the organization does not have

to be specified. When the name or title is recognized as a local (this organization)

one, and no organization is provided, the current one is assumed. If there is no

recognition, the CLP will request the remote organization name or better spelling on
the name or title.

K

Message Identifier

Message Identifier

A message is identified by three pieces of data related to it: the sponsoring

organization, the creation or transmission date, and the creator or releasing

authority (transmitter). When a user wishes to specify a message to the service, he

must Know the sponsor organization. After that a date-time or date-time range is

necessary. The more specific the range, the easier the search. This is sufficient

information for the CLP to aid the user in finding the message he is interested in. If

the user does have the complete message identifier, that is of course helpful.

INTERNAL FORMATS AND OUTPUTS

This section lists all supported data types with their associate classes,

enumerated are their internal formats and output forms, both short and long.
Also

Address [Personnel Item]

Organization Number;

Name/Title Number.

For entire organization address, the user number is zero. For remote users, the

user/title number is replaced by a text string containing the user/title name.

Short: Short Name/Title @ Short Organisation

The local organization is omitted for short output form.

*>IPTO

*>Director

»>JCR @ IPTO
49

 - .,-..,-. v.^...^.^,^»-.--^^^-^»^^^-^!-),..^ . . „. „., ,..,.^. ^ ...,

K

APPENDIX

Long: Long Name/Title of Long Organization

The user's rank, where known, is used for the long output form.

»>ARPA/IPTO

*>Director Uncapher of USC/ISI

*>JCR Lickiider, Director of ARPA/IPTO

Cardinal Number [Quantity]

Binary reoresentation.

Short: Min num decimal output

*>1 1234567890 -6

Long: 15 columns with leading sign and commas

*> +1 +1,234,567,890 -6

Character [Text Item]

code number.

Short and Long: Character

Date [Chronological Item]

Number of days since Nov 17, 1858.

Short: Three character month followed by day number and two-digit year.

*>Jan 3,67

*>May 23,74

Long: Month followed by day number and year

*>January 3,1967

*>May 23,1974

50

-■--'-" ■■ -

a,fi-^lififltetf'i,'ll:^äMiiiii llll hi rill«
--■ ' - ■--->-

APPENDIX

Date-Time [Chronological ItemJ

Number of days since Nov 17, 1858;

Number of seconds past midnight GMT.

Short: Short date followed by short time

*>June 17,75 17:52

»>December 23,55 9:13

Long: Long date followed by long time and time zone.

*>June 17,1975 5:52 PM PDT

*>December 23,1956 9:13 AM PST

Date-Times can be output in either local time or GMT.

Date-Time Range [Chronological Item]

Starting Date-Time;

Ending Date-Time.

Any Date-Time Range which corresponds to an entire year, month, day, hour, or

minute will be output as the appropriate foreshortened Date-Time.

Short: Short start - short end

Long: Long start through long end

Dollar [Quantity]

Four bits per digit decimal character string representing number of cents.

Short: Minimal output with decimal point, though two trailing zeroes may be

omitted.

Long: Dollar sign, commas, and trailing zeros are not omitted.

Line [Text Item]

Pointer to a block of characters terminated by a zero character;

Character count.

Short: The line is "filled" into the current display area.

51

..■..--;j.V—f-i. ■:-..■-■-.1-:Ij- -Ir ^UJA^uÜB .-....■. ..,.. .^■■J...- V.. ..,_...„ -:. ■ - .■.„...,-..,■„-,... , .::.: ...,..,. ll lllllirri f Ti ■ 1 I I - '^

£.# 1 ■! ,U«»!,Ui»iJi ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^—^^^^^—

APPENDIX

Long: The line is "fiiled" and "justified" into the current display area.

Message Identifier [Message Identifier]

Organization Number;

Date-Time;

Name/Title;

Create or Transmit Flag;

File access information (on-line/off-line).

Short: Organization/Short Date-Time

*>CINCPAC/Jun 2,74-10:17:41

*>ARPA-IPTO/Sep 17,74-17:21:17

Long: Organization/Short Date-Time followed be either from (transmit) or by
(create) and the user/title name.

*>CINCPAC/June 2,1974-10:17:41AM GMT by Major Wilcox

*>ARPA-IPTO/September 17,1974-5:21:17PM GMT from Kahn

Message Type [Special Category]

0 Informal

1 Formal

Short: FORMAL or INFORM

Long: FORMAL or INFORMAL

Name [Personnel Item]

user number or text string for remote user.

Short: user name

Long: Rank (if available) followed by user name

Ordinal Number [Quantity]

Binary number.

Short: Short cardinal followed by appropriate suffix (st, nd, rd, th).

52

 ^..-■. „..^--■.,^ „.■„,-. .. ^ —^

^^^^^^—^^^^^^"

■

. .

I

APPENDIX

*>lst,2nd,3rd,4th,5th,100th(101st

Long: Spelled out for numbers less than 100.

*>first,second,third,fourth,fifth,100th,101st

Organization [Personnel Item]

Organization Number.

Short: Organization abbreviation

Long: Organization Formal name

Priority [Special Category]

0 Routine

1 Priority

2 Immediate

3 nSon

a Flash Override

Short: Pronty Number

Long: Priority Name

Rank [Personnel Item]

Rank Number.

Short; Rank abbreviation

Long: Rank name

Recipient [Transmission Specification]

Organization Number;

Name/Title;

Priority Number;

i^ccial Handling Code.

Short: Short address followed by priority number and special handling abbreviation

Long: Long address followed by priority and special handling

53

-. -■ — ■ . _^^ -■—'—-

,.J .I,.I„H-,IIJ,;I .,.i.

APPENDIX

Reviewer [Transmission Specification]

Recipient;

Signoff Number;

Text.

Short: Short recipient followed by signoff abbreviation and text.

Long: Long recioient followed by signoff and text

Security Classification [Special Category]

0 Unclassified

1 Confidential

2 Secret

3 Top Secret

Short: Classification abbreviation

Long: Classification

Signoff [Special Category]

0 OK
1 OK?
2 0K-
3 Read
4 No Good
5 In Progress

Short: Signoff ibbreviation

Long: Signoff

Special Handling [Special Category]

0 Eyes-only

1 No Forwarding

Short: Special handling abbreviation

Long: Special handling

Text [Text Item]

Pointer to characters terminated by a zero character;

Character count.

54

- - --^■->—-.- ...-.^-^«.^.

^^^^"i

r ^>-'-

APPENDIX

Short: "Filled" into current display window

Long: "Filled" and "justified" into current display window.

Time [Chronological Item]

Number of seconds since midnight.

Short; 24 hour time

*>10:17:21

*>17:21:45

Long: 12 hour AM-PM time with time zone

*>10:17:21AM EST

*>5:21:45P!vl GMT

Title [Personnel Item]

Title number.

Short: Title

Long: Title with name of current holder

Word [Text Item]

characters.

Short: Word

Long: Wora

User-ID [Personnel Item]

Organization Number;

Name/Title Number.

Short: Name/Title 5? Organization

Long: Name/Title of Organization

55

iiihrfiiilfiiri-i'iliiliiniliiiftf-rfrfriTiiniriili r --■ ^-■■.■^—■ hMirhlrlliinrniin- n.-'--—----^- i.--..^.--i-^^^B^^c^.fa.,tliJ^,^.„

